Zeitschriftenartikel zum Thema „Viscous flow Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Viscous flow Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Masuko, Akira, Yasushi Shirose, Yasunori Ando und Masafumi Kawai. „Numerical Simulation of Viscous Flow around a Series of Mathematical Ship Models“. Journal of the Society of Naval Architects of Japan 1987, Nr. 162 (1987): 1–10. http://dx.doi.org/10.2534/jjasnaoe1968.1987.162_1.
Der volle Inhalt der QuelleToxopeus, Serge L. „Deriving mathematical manoeuvring models for bare ship hulls using viscous flow calculations“. Journal of Marine Science and Technology 14, Nr. 1 (23.07.2008): 30–38. http://dx.doi.org/10.1007/s00773-008-0002-9.
Der volle Inhalt der QuelleAripov, M. M., J. SH Rajabov und SH R. Settiev. „About one of the mathematical models of viscous flow incompressible fluid above sandy bottom“. Journal of Physics: Conference Series 1902, Nr. 1 (01.05.2021): 012001. http://dx.doi.org/10.1088/1742-6596/1902/1/012001.
Der volle Inhalt der QuelleHowell, P. D. „Models for thin viscous sheets“. European Journal of Applied Mathematics 7, Nr. 4 (August 1996): 321–43. http://dx.doi.org/10.1017/s0956792500002400.
Der volle Inhalt der QuellePATEL, L. K., und LAKSHMI S. DESAI. „PLANE SYMMETRIC VISCOUS-FLUID COSMOLOGICAL MODELS WITH HEAT FLUX“. International Journal of Modern Physics D 03, Nr. 03 (September 1994): 639–45. http://dx.doi.org/10.1142/s0218271894000770.
Der volle Inhalt der QuelleKrusteva, Ekaterina D., Stefan Y. Radoslavov und Zdravko I. Diankov. „Modelling the Seepage of Groundwater: Application of the Viscous Analogy and Numerical Methods“. Applied Rheology 9, Nr. 4 (01.08.1999): 165–71. http://dx.doi.org/10.1515/arh-2009-0012.
Der volle Inhalt der QuelleNazarov, Serdar, Muhammetberdi Rakhimov und Gurbanyaz Khekimov. „Linearization of the Navier-Stokes equations“. E3S Web of Conferences 216 (2020): 01060. http://dx.doi.org/10.1051/e3sconf/202021601060.
Der volle Inhalt der QuelleAli, Azhar, Dil Nawaz Khan Marwat und Saleem Asghar. „Viscous flow over a stretching (shrinking) and porous cylinder of non-uniform radius“. Advances in Mechanical Engineering 11, Nr. 9 (September 2019): 168781401987984. http://dx.doi.org/10.1177/1687814019879842.
Der volle Inhalt der QuelleNazarov, Serdar, Muhammetberdi Rakhimov und Gurbanyaz Khekimov. „Optimal modeling of the heat transfer of a viscous incompressible liquid“. E3S Web of Conferences 216 (2020): 01059. http://dx.doi.org/10.1051/e3sconf/202021601059.
Der volle Inhalt der QuelleSocolowsky, Jürgen. „On the Nusselt Solution of a Nonisothermal Two-Fluid Inclined Film Flow“. International Journal of Mathematics and Mathematical Sciences 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/981983.
Der volle Inhalt der QuelleXie, Fangwei, Diancheng Wu, Yaowen Tong, Bing Zhang und Jie Zhu. „Effects of structural parameters of oil groove on transmission characteristics of hydro-viscous clutch based on viscosity-temperature property of oil film“. Industrial Lubrication and Tribology 69, Nr. 5 (04.09.2017): 690–700. http://dx.doi.org/10.1108/ilt-12-2015-0207.
Der volle Inhalt der QuelleCHAI, ZHEN-HUA, BAO-CHANG SHI und LIN ZHENG. „LATTICE BOLTZMANN SIMULATION OF VISCOUS DISSIPATION IN ELECTRO-OSMOTIC FLOW IN MICROCHANNELS“. International Journal of Modern Physics C 18, Nr. 07 (Juli 2007): 1119–31. http://dx.doi.org/10.1142/s0129183107011200.
Der volle Inhalt der QuelleDorodnitsyn, L. V. „Acoustics in viscous subsonic flow models with nonreflecting boundary conditions“. Computational Mathematics and Modeling 11, Nr. 4 (Oktober 2000): 356–76. http://dx.doi.org/10.1007/bf02359300.
Der volle Inhalt der QuelleZhang, Guoping, und Mingchao Cai. „Normal mode analysis of 3D incompressible viscous fluid flow models“. Applicable Analysis 100, Nr. 1 (25.03.2019): 116–34. http://dx.doi.org/10.1080/00036811.2019.1594201.
Der volle Inhalt der QuelleZhang, Bo-ning, Xiao-gang Li, Yu-long Zhao, Cheng Chang und Jian Zheng. „A Review of Gas Flow and Its Mathematical Models in Shale Gas Reservoirs“. Geofluids 2020 (30.11.2020): 1–19. http://dx.doi.org/10.1155/2020/8877777.
Der volle Inhalt der QuelleLei, Chen, Gao Junjie, Liu Gang, Zhai Keping, Zhang Yuyu und Gao Jingyang. „Prediction of pipeline restart using different rheological models of gelled crude oil“. Applied Rheology 29, Nr. 1 (01.01.2019): 182–95. http://dx.doi.org/10.1515/arh-2019-0016.
Der volle Inhalt der QuelleLi, Xi Bing, Shi Gang Wang, Jian Hua Guo und Dong Sheng Li. „A Mathematical Modeling Method on Micro Heat Pipe with a Trapezium-Grooved Wick Structure“. Applied Mechanics and Materials 29-32 (August 2010): 1686–94. http://dx.doi.org/10.4028/www.scientific.net/amm.29-32.1686.
Der volle Inhalt der QuelleAyata, Muammer, und Ozan Özkan. „A new approach to mathematical models of Drinfeld-Sokolov-Wilson and coupled viscous Burgers’ equations in water flow“. Physica Scripta 96, Nr. 9 (07.06.2021): 095207. http://dx.doi.org/10.1088/1402-4896/ac05f4.
Der volle Inhalt der QuelleHamdan, M. H., und R. A. Ford. „Single-phase flow through porous channels part II: Flow models, critical length, and viscous separation“. Applied Mathematics and Computation 69, Nr. 2-3 (Mai 1995): 241–54. http://dx.doi.org/10.1016/0096-3003(94)00132-n.
Der volle Inhalt der QuelleCamassa, Roberto, und H. Reed Ogrosky. „On viscous film flows coating the interior of a tube: thin-film and long-wave models“. Journal of Fluid Mechanics 772 (07.05.2015): 569–99. http://dx.doi.org/10.1017/jfm.2015.221.
Der volle Inhalt der QuelleWANG, Y., Y. L. HE, Q. LI, G. H. TANG und W. Q. TAO. „LATTICE BOLTZMANN MODEL FOR SIMULATING VISCOUS COMPRESSIBLE FLOWS“. International Journal of Modern Physics C 21, Nr. 03 (März 2010): 383–407. http://dx.doi.org/10.1142/s0129183110015178.
Der volle Inhalt der QuelleСуровежко, А. С., und С. И. Мартыненко. „On optimization of technical devices based on a hierarchy of mathematical models“. Numerical Methods and Programming (Vychislitel'nye Metody i Programmirovanie), Nr. 4 (10.09.2019): 411–27. http://dx.doi.org/10.26089/nummet.v20r436.
Der volle Inhalt der QuellePerkins, Greg. „Mathematical modelling of in situ combustion and gasification“. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 232, Nr. 1 (02.08.2017): 56–73. http://dx.doi.org/10.1177/0957650917721595.
Der volle Inhalt der QuelleBayly, P. V., und S. K. Dutcher. „Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella“. Journal of The Royal Society Interface 13, Nr. 123 (Oktober 2016): 20160523. http://dx.doi.org/10.1098/rsif.2016.0523.
Der volle Inhalt der QuelleZhurba Eremeeva, I. A., D. Scerrato, C. Cardillo und A. Tran. „A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS“. Problems of strenght and plasticity 81, Nr. 4 (2019): 500–511. http://dx.doi.org/10.32326/1814-9146-2019-81-4-500-511.
Der volle Inhalt der QuelleZhurba Eremeeva, I. A., D. Scerrato, C. Cardillo und A. Tran. „A MATHEMATICAL MODEL OF NONSTATIONARY MOTION OF A VISCOELASTIC FLUID IN ROLLER BEARINGS“. Problems of strenght and plasticity 81, Nr. 4 (2019): 501–12. http://dx.doi.org/10.32326/1814-9146-2019-81-4-501-512.
Der volle Inhalt der QuellePrůša, Vít, und K. R. Rajagopal. „Implicit Type Constitutive Relations for Elastic Solids and Their Use in the Development of Mathematical Models for Viscoelastic Fluids“. Fluids 6, Nr. 3 (22.03.2021): 131. http://dx.doi.org/10.3390/fluids6030131.
Der volle Inhalt der QuelleReddy, Kattamreddy Venugopal, Machireddy Gnaneswara Reddy und Oluwole Daniel Makinde. „Heat and Mass Transfer of a Peristaltic Electro-osmotic Flow of a Couple Stress Fluid through an Inclined Asymmetric Channel with Effects of Thermal Radiation and Chemical Reaction“. Periodica Polytechnica Mechanical Engineering 65, Nr. 2 (16.03.2021): 151–62. http://dx.doi.org/10.3311/ppme.16760.
Der volle Inhalt der QuelleZhong, Huiying, Weidong Zhang, Hongjun Yin und Haoyang Liu. „Study on Mechanism of Viscoelastic Polymer Transient Flow in Porous Media“. Geofluids 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/8763951.
Der volle Inhalt der QuelleDu, Dong Xing, Fa Hu Zhang, Dian Cai Geng und Ying Ge Li. „Numerical Study on Film Foam Flow Characteristics in a Straight Duct“. Key Engineering Materials 561 (Juli 2013): 472–77. http://dx.doi.org/10.4028/www.scientific.net/kem.561.472.
Der volle Inhalt der QuelleTai, Chang-Hsien, Yuh-Long Tian und Jtm-Lun Liou. „High-resolution upwind viscous flow solver on SOCBT configuration with turbulence models“. Finite Elements in Analysis and Design 18, Nr. 1-3 (Dezember 1994): 237–57. http://dx.doi.org/10.1016/0168-874x(94)90105-8.
Der volle Inhalt der QuelleDeng, Wubing, und Igor B. Morozov. „Solid viscosity of fluid-saturated porous rock with squirt flows at seismic frequencies“. GEOPHYSICS 81, Nr. 4 (Juli 2016): D395—D404. http://dx.doi.org/10.1190/geo2015-0406.1.
Der volle Inhalt der QuelleHu, Yumeng, Haiming Huang und Zimao Zhang. „Numerical simulation of a hypersonic flow past a blunt body“. International Journal of Numerical Methods for Heat & Fluid Flow 27, Nr. 6 (05.06.2017): 1351–64. http://dx.doi.org/10.1108/hff-05-2016-0187.
Der volle Inhalt der QuelleWang, Da Zheng, Dan Wang, Lei Mei und Wei Chao Shi. „The Hydrodynamic Analysis of Propeller Based on ANSYS-CFX“. Advanced Materials Research 694-697 (Mai 2013): 673–77. http://dx.doi.org/10.4028/www.scientific.net/amr.694-697.673.
Der volle Inhalt der QuelleFiorot, G. H., G. F. Maciel und C. Kitano. „MATHEMATICAL MODEL AND EXPERIMENTAL PROCEEDINGS TO DETERMINE ROLL WAVES IN OPEN CHANNELS“. Revista de Engenharia Térmica 10, Nr. 1-2 (31.12.2011): 55. http://dx.doi.org/10.5380/reterm.v10i1-2.61953.
Der volle Inhalt der QuelleStrzelecki, Tomasz, und Michał Strzelecki. „Relation Between Filtration and Soil Consolidation Theories“. Studia Geotechnica et Mechanica 37, Nr. 1 (01.03.2015): 105–14. http://dx.doi.org/10.1515/sgem-2015-0012.
Der volle Inhalt der QuelleHunt, Barry. „Knowledge-Based Nonlinear Boundary Integral Models of Compressible Viscous Flows Over Arbitrary Bodies: Taking CFD Back to Basics“. Applied Mechanics Reviews 44, Nr. 11S (01.11.1991): S130—S142. http://dx.doi.org/10.1115/1.3121345.
Der volle Inhalt der QuelleCenteno, R., K. S. Varyani und C. Guedes Soares. „Experimental Study on the Influence of Hull Spacing on Hard-Chine Catamaran Motions“. Journal of Ship Research 45, Nr. 03 (01.09.2001): 216–27. http://dx.doi.org/10.5957/jsr.2001.45.3.216.
Der volle Inhalt der QuelleTIAN, ZHI-WEI, CHUN ZOU, H. J. LIU, Z. H. LIU, Z. L. GUO und C. G. ZHENG. „THERMAL LATTICE BOLTZMANN MODEL WITH VISCOUS HEAT DISSIPATION IN THE INCOMPRESSIBLE LIMIT“. International Journal of Modern Physics C 17, Nr. 08 (August 2006): 1131–39. http://dx.doi.org/10.1142/s0129183106009631.
Der volle Inhalt der QuelleShchuryk, Volodymyr, Leonid Serilko, Leonid Voitovych und Zoia Sasiuk. „MATHEMATICAL MODEL OF DYNAMICS OF CENTRIFUGE FOR FORMATION OF CONCRETE TUBULAR PRODUCTS“. Vibrations in engineering and technology, Nr. 4(95) (20.11.2019): 72–79. http://dx.doi.org/10.37128/2306-8744-2019-4-9.
Der volle Inhalt der QuelleAstafiev, V. I., M. G. Kakhidze, V. I. Popkov und A. V. Popkova. „MULTI-SCALE STRESS-DEFORMATION STATUS OF POROUS GEOLOGICAL STRUCTURE AS RELATED TO WELL FILTRATION FLOWS“. Vestnik of Samara University. Natural Science Series 19, Nr. 9.2 (06.06.2017): 153–69. http://dx.doi.org/10.18287/2541-7525-2013-19-9.2-153-169.
Der volle Inhalt der QuellePIYASENA, PUNIDADAS, und ROBIN C. McKELLAR. „Influence of Guar Gum on the Thermal Stability of Listeria innocua, Listeria monocytogenes, and γ-Glutamyl Transpeptidase during High-Temperature Short-Time Pasteurization of Bovine Milk“. Journal of Food Protection 62, Nr. 8 (01.08.1999): 861–66. http://dx.doi.org/10.4315/0362-028x-62.8.861.
Der volle Inhalt der QuelleDAMSGAARD, ANDERS, JENNY SUCKALE, JAN A. PIOTROWSKI, MORGANE HOUSSAIS, MATTHEW R. SIEGFRIED und HELEN A. FRICKER. „Sediment behavior controls equilibrium width of subglacial channels“. Journal of Glaciology 63, Nr. 242 (27.11.2017): 1034–48. http://dx.doi.org/10.1017/jog.2017.71.
Der volle Inhalt der QuelleDeng, Wubing, und Igor B. Morozov. „A simple and general macroscopic model for local-deformation effects in fluid-saturated porous rock“. Geophysical Journal International 220, Nr. 3 (06.12.2019): 1893–903. http://dx.doi.org/10.1093/gji/ggz552.
Der volle Inhalt der QuelleLeclaire, Sébastien, Andrea Parmigiani, Bastien Chopard und Jonas Latt. „Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models“. International Journal of Modern Physics C 28, Nr. 07 (Juli 2017): 1750085. http://dx.doi.org/10.1142/s0129183117500851.
Der volle Inhalt der QuelleCurt, Paula, und Denisa Fericean. „A Special Class of Univalent Functions in Hele-Shaw Flow Problems“. Abstract and Applied Analysis 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/948236.
Der volle Inhalt der QuelleLi, Guo-Jie, Wen-Bin Shangguan und Subhash Rakheja. „Modelling and analysis of a magneto-rheological damper featuring non-magnetized flow paths in the piston“. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 234, Nr. 10-11 (08.04.2020): 2665–79. http://dx.doi.org/10.1177/0954407020907487.
Der volle Inhalt der QuelleAlam, Aftab, Dil Nawaz Khan Marwat und Saleem Asghar. „Flow over a non-uniform sheet with non-uniform stretching (shrinking) and porous velocities“. Advances in Mechanical Engineering 12, Nr. 2 (Februar 2020): 168781402090900. http://dx.doi.org/10.1177/1687814020909000.
Der volle Inhalt der QuelleButler, J. P., J. Huang, S. H. Loring, S. J. Lai-Fook, P. M. Wang und T. A. Wilson. „Model for a pump that drives circulation of pleural fluid“. Journal of Applied Physiology 78, Nr. 1 (01.01.1995): 23–29. http://dx.doi.org/10.1152/jappl.1995.78.1.23.
Der volle Inhalt der QuelleAsif, Muhammad, Sami Ul Haq, Saeed Islam, Tawfeeq Abdullah Alkanhal, Zar Khan, Ilyas Khan und Kottakkaran Nisar. „Unsteady Flow of Fractional Fluid between Two Parallel Walls with Arbitrary Wall Shear Stress Using Caputo–Fabrizio Derivative“. Symmetry 11, Nr. 4 (01.04.2019): 449. http://dx.doi.org/10.3390/sym11040449.
Der volle Inhalt der Quelle