Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Viscous flow Mathematical models“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Viscous flow Mathematical models" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Viscous flow Mathematical models"
Masuko, Akira, Yasushi Shirose, Yasunori Ando und Masafumi Kawai. „Numerical Simulation of Viscous Flow around a Series of Mathematical Ship Models“. Journal of the Society of Naval Architects of Japan 1987, Nr. 162 (1987): 1–10. http://dx.doi.org/10.2534/jjasnaoe1968.1987.162_1.
Der volle Inhalt der QuelleToxopeus, Serge L. „Deriving mathematical manoeuvring models for bare ship hulls using viscous flow calculations“. Journal of Marine Science and Technology 14, Nr. 1 (23.07.2008): 30–38. http://dx.doi.org/10.1007/s00773-008-0002-9.
Der volle Inhalt der QuelleAripov, M. M., J. SH Rajabov und SH R. Settiev. „About one of the mathematical models of viscous flow incompressible fluid above sandy bottom“. Journal of Physics: Conference Series 1902, Nr. 1 (01.05.2021): 012001. http://dx.doi.org/10.1088/1742-6596/1902/1/012001.
Der volle Inhalt der QuelleHowell, P. D. „Models for thin viscous sheets“. European Journal of Applied Mathematics 7, Nr. 4 (August 1996): 321–43. http://dx.doi.org/10.1017/s0956792500002400.
Der volle Inhalt der QuellePATEL, L. K., und LAKSHMI S. DESAI. „PLANE SYMMETRIC VISCOUS-FLUID COSMOLOGICAL MODELS WITH HEAT FLUX“. International Journal of Modern Physics D 03, Nr. 03 (September 1994): 639–45. http://dx.doi.org/10.1142/s0218271894000770.
Der volle Inhalt der QuelleKrusteva, Ekaterina D., Stefan Y. Radoslavov und Zdravko I. Diankov. „Modelling the Seepage of Groundwater: Application of the Viscous Analogy and Numerical Methods“. Applied Rheology 9, Nr. 4 (01.08.1999): 165–71. http://dx.doi.org/10.1515/arh-2009-0012.
Der volle Inhalt der QuelleNazarov, Serdar, Muhammetberdi Rakhimov und Gurbanyaz Khekimov. „Linearization of the Navier-Stokes equations“. E3S Web of Conferences 216 (2020): 01060. http://dx.doi.org/10.1051/e3sconf/202021601060.
Der volle Inhalt der QuelleAli, Azhar, Dil Nawaz Khan Marwat und Saleem Asghar. „Viscous flow over a stretching (shrinking) and porous cylinder of non-uniform radius“. Advances in Mechanical Engineering 11, Nr. 9 (September 2019): 168781401987984. http://dx.doi.org/10.1177/1687814019879842.
Der volle Inhalt der QuelleNazarov, Serdar, Muhammetberdi Rakhimov und Gurbanyaz Khekimov. „Optimal modeling of the heat transfer of a viscous incompressible liquid“. E3S Web of Conferences 216 (2020): 01059. http://dx.doi.org/10.1051/e3sconf/202021601059.
Der volle Inhalt der QuelleSocolowsky, Jürgen. „On the Nusselt Solution of a Nonisothermal Two-Fluid Inclined Film Flow“. International Journal of Mathematics and Mathematical Sciences 2009 (2009): 1–8. http://dx.doi.org/10.1155/2009/981983.
Der volle Inhalt der QuelleDissertationen zum Thema "Viscous flow Mathematical models"
Stokes, Yvonne Marie. „Very Viscous Flows Driven by Gravity with particular application to Slumping of Molten Glass“. Title page, contents and abstract only, 1998. http://thesis.library.adelaide.edu.au/public/adt-SUA20020724.171358.
Der volle Inhalt der QuelleMarshall, David D. „Extending the functionalities of Cartesian grid solvers : viscous effects modeling and MPI parallelization“. Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/11999.
Der volle Inhalt der QuelleRossi, Louis Frank, und Louis Frank Rossi. „A spreading blob vortex method for viscous bounded flows“. Diss., The University of Arizona, 1993. http://hdl.handle.net/10150/186562.
Der volle Inhalt der QuelleKim, Goo. „A vorticity-velocity approach for three-dimensional unsteady viscous flow over wings“. Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/12123.
Der volle Inhalt der QuelleHuang, Lingyan, und 黃凌燕. „Mass transport due to surface waves in a water-mud system“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B35380457.
Der volle Inhalt der QuelleVantzos, Orestis. „Mathematical Modeling of Charged Liquid Droplets: Numerical Simulation and Stability Analysis“. Thesis, University of North Texas, 2006. https://digital.library.unt.edu/ark:/67531/metadc5240/.
Der volle Inhalt der QuelleSirino, Thiago. „Estudo numérico da influência da viscosidade no desempenho de uma bomba centrífuga submersa“. Universidade Tecnológica Federal do Paraná, 2013. http://repositorio.utfpr.edu.br/jspui/handle/1/880.
Der volle Inhalt der QuelleBombas centrífugas submersas têm sido cada vez mais utilizadas comométodo de elevação artificial para a produção de óleos em campos marítimos profundos. O bombeio de fluidos com viscosidades significativamente diferentes a da água gera um desempenho da bomba distinto ao do apresentado no seu catálogo, com uma queda de rendimento da mesma, assim sendo, a influência da viscosidade do fluido no desempenho em uma bomba centrífuga submersa tem recebido muita atenção há alguns anos. Neste cenário, no presente trabalho foi realizada a simulação numérica do escoamento monofásico, newtoniano, incompressível e isotérmico no rotor e difusor de uma bomba centrífuga submersa utilizando o programa de dinâmica de fluidos computacional ANSYS CFX. As simulações numéricas foram realizadas para um estágio de uma BCS de três estágios para escoamentos envolvendo fluidos com viscosidades variando de 1 a 1020 cP. A partir dos resultados numéricos obtidos foram elaboradas as curvas para a altura de elevação da bomba e eficiência e comparados contra dados experimentais obtidos por Amaral (2007). Também foi realizada uma análise do padrão do escoamento no rotor e difusor com o objetivo de avaliar o comportamento dos campos de velocidade e pressão, a intensidade turbulenta e o aparecimento de recirculações para a BCS operando fora da faixa de operação ótima. Alem disso foi analisada a degradação do desempenho da bomba em função da viscosidade do fluido de trabalho, e foram utilizados números adimensionais como parâmetros para quantificar essa degradação.
This work presents a numerical analysis on the influence of viscosity on the performance of a semi-axial electrical submersible pump (ESP) such as the ones used in offshore petroleum production. A single stage composed of an impeller with seven blades and a diffuser with seven vanes is considered. Flow simulations for water and other fluids with viscosity ranging from 60 to 1020 cP were performed with the aid of Computational Fluid Dynamics, and both design and off-design flow rates and impeller speeds were investigated. The numerical model was compared with experimental measurements of the static pressure difference on a given stage of a three-stage ESP system. Results showed good agreement between the numerical and the measured pressure difference values. As a main objective, the pump performance degradation relative to viscosity is analyzed for several conditions regarding design and off-design operation. The flow field pattern associated with the effect of viscosity is also analyzed. Studying the pump performance degradation cause by viscosity, especially for off-design operation like this work is also intended, is a current and ongoing demand in offshore petroleum production. In association with that, understanding the flow field pattern for those scenarios, which seems to be very particular for each pump, should help to contribute to the related literature in this field.
Cummings, Linda Jane. „Free boundary models in viscous flow“. Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339364.
Der volle Inhalt der QuelleGoble, Brian Dean. „A truncation error injection approach to viscous-inviscid interaction“. Diss., The University of Arizona, 1988. http://hdl.handle.net/10150/184318.
Der volle Inhalt der QuelleGarthwaite, Matthew Campbell. „Deformation of Tibet : InSAR analysis and viscous flow models“. Thesis, University of Leeds, 2011. http://etheses.whiterose.ac.uk/2611/.
Der volle Inhalt der QuelleBücher zum Thema "Viscous flow Mathematical models"
Laminar viscous flow. New York: Springer, 1995.
Den vollen Inhalt der Quelle findenNumerical computation of compressible and viscous flow. Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc., 2014.
Den vollen Inhalt der Quelle findenRose, M. E. Numerical methods for incompressible viscous flows with engineering aplications. Norfolk, Va: Department of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University, 1988.
Den vollen Inhalt der Quelle findenPao, Yih-Ho. Time-dependent viscous incompressible flow past a finite flat plate. [Seattle, Wash.]: Boeing Scientific Research Laboratories, Flight Sciences Laboratory, 1986.
Den vollen Inhalt der Quelle findenPao, Yih-Ho. Time-dependent viscous incompressible flow past a finite flat plate. [Seattle, Wash.]: Boeing Scientific Research Laboratories, Flight Sciences Laboratory, 1986.
Den vollen Inhalt der Quelle findenBielski, W. Nonstationary flows of viscous fluids through porous elastic media: Homogenization method. Warszawa: Institute of Geophysics, Polish Academy of Sciences, 2005.
Den vollen Inhalt der Quelle findenLliboutry, Luis. Very slow flows of solids: Basics of modeling in geodynamics and glaciology. Dordrecht: Martinus Nijhoff, 1987.
Den vollen Inhalt der Quelle findenBartel, Robert E. Prediction of transonic vortex flows using linear and nonlinear turbulent eddy viscosity models. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 2000.
Den vollen Inhalt der Quelle findenIntroduction to the numerical analysis of incompressible viscous flows. Philadelphia: Society for Industrial and Applied Mathematics, 2008.
Den vollen Inhalt der Quelle findenGolovachov, Yuri P. Numerical simulation of viscous shock layer flows. Dordrecht: Kluwer Academic Publishers, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Viscous flow Mathematical models"
Chetverushkin, Boris N., und Eugene V. Shilnikov. „Unsteady Viscous Flow Simulation Based on QGD System“. In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 137–46. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_11.
Der volle Inhalt der QuelleAbels, Helmut, und Harald Garcke. „Weak Solutions and Diffuse Interface Models for IncompressibleTwo-Phase Flows“. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 1267–327. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-13344-7_29.
Der volle Inhalt der QuelleAbels, Helmut, und Harald Garcke. „Weak Solutions and Diffuse Interface Models for Incompressible Two-Phase Flows“. In Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, 1–60. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-10151-4_29-1.
Der volle Inhalt der QuelleAzevedo, A. V., und D. Marchesin. „Multiple Viscous Profile Riemann Solutions in Mixed Elliptic-Hyperbolic Models for Flow in Porous Media“. In The IMA Volumes in Mathematics and Its Applications, 1–17. New York, NY: Springer New York, 1990. http://dx.doi.org/10.1007/978-1-4613-9049-7_1.
Der volle Inhalt der QuelleAupoix, B. „Experimental Validation of Hypersonic Viscous Flow Models“. In New Trends in Instrumentation for Hypersonic Research, 41–50. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1828-6_4.
Der volle Inhalt der QuelleElefteriadou, Lily. „Mathematical and Empirical Models“. In An Introduction to Traffic Flow Theory, 129–35. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8435-6_6.
Der volle Inhalt der QuelleKovarik, Karel. „Mathematical Models of Groundwater Flow“. In Numerical Models in Groundwater Pollution, 61–108. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56982-1_5.
Der volle Inhalt der QuelleKobayashi, K., Y. Ohura und K. Onishi. „Computer Programme KYOKAI.F for Viscous and Thermal Fluid Flow Problems“. In Mathematical and Computational Aspects, 579–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-21908-9_39.
Der volle Inhalt der QuelleColli, Pierluigi, Gianni Gilardi und Jürgen Sprekels. „Nonlocal Phase Field Models of Viscous Cahn–Hilliard Type“. In CIM Series in Mathematical Sciences, 71–100. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33116-0_3.
Der volle Inhalt der QuelleKaltenbacher, Manfred, und Stefan Schoder. „Physical Models for Flow: Acoustic Interaction“. In Advances in Mathematical Fluid Mechanics, 265–353. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-67845-6_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Viscous flow Mathematical models"
Boretti, A. A. „Compressible, Turbulent, Viscous Flow Computations for Blade Aerodynamic and Heat Transfer“. In ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-gt-178.
Der volle Inhalt der QuelleWanderley, Juan B. V., und Carlos Levi. „Free Surface Viscous Flow Around a Ship Model“. In 25th International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/omae2006-92165.
Der volle Inhalt der QuelleWang, X. Sheldon. „A Simplified Model of Flow-Induced Oscillations of Collapsible Tubes Conveying Viscous Fluids“. In ASME 2006 Pressure Vessels and Piping/ICPVT-11 Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/pvp2006-icpvt-11-93851.
Der volle Inhalt der QuelleBhuiyan, A. S., M. R. Biswas, Ilias Kotsireas, Roderick Melnik und Brian West. „Effects of Pressure Stress Work and Viscous Dissipation in Mixed Convection Flow Along a Vertical Flat Plate“. In ADVANCES IN MATHEMATICAL AND COMPUTATIONAL METHODS: ADDRESSING MODERN CHALLENGES OF SCIENCE, TECHNOLOGY, AND SOCIETY. AIP, 2011. http://dx.doi.org/10.1063/1.3663449.
Der volle Inhalt der QuelleFomin, Sergei A., Konstantin G. Kornev, Chris Wolter, Jon Young und Tyler Brandenburg. „Mathematical Modeling of the Polymer Rotational Molding“. In ASME/JSME 2007 5th Joint Fluids Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/fedsm2007-37619.
Der volle Inhalt der QuelleOkafor, Charles, Patrick Verdin und Phill Hart. „CFD Investigation of Downhole Natural Gas Separation Efficiency in the Churn Flow Regime“. In SPE Gulf Coast Section Electric Submersible Pumps Symposium. SPE, 2021. http://dx.doi.org/10.2118/204509-ms.
Der volle Inhalt der QuelleNakate, Prajakta, Domenico Lahaye, Cornelis Vuik und Marco Talice. „Systematic Development and Mesh Sensitivity Analysis of a Mathematical Model for an Anode Baking Furnace“. In ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/fedsm2018-83131.
Der volle Inhalt der QuellePereira, Filipe S., Guilherme Vaz, Luís Eça und Sébastien Lemaire. „On the Numerical Prediction of Transitional Flows With Reynolds-Averaged Navier-Stokes and Scale-Resolving Simulation Models“. In ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54414.
Der volle Inhalt der QuelleGiles, Michael, und Robert Haimes. „Validation of a Numerical Method for Unsteady Flow Calculations“. In ASME 1991 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/91-gt-271.
Der volle Inhalt der QuelleEscandón, Juan P., und David A. Torres. „Analysis of Combined Electroosmotic and Pressure Driven Flow of Multilayer Immiscible Fluids in a Narrow Capillary“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10466.
Der volle Inhalt der Quelle