Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Viscoelastic Layers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Viscoelastic Layers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Viscoelastic Layers"
Pshenichnov, Sergey, Radan Ivanov und Maria Datcheva. „Transient Wave Propagation in Functionally Graded Viscoelastic Structures“. Mathematics 10, Nr. 23 (29.11.2022): 4505. http://dx.doi.org/10.3390/math10234505.
Der volle Inhalt der QuelleUngar, Eric E. „Damping by Viscoelastic Layers“. Applied Mechanics Reviews 53, Nr. 6 (01.06.2000): R33—R38. http://dx.doi.org/10.1115/1.3097346.
Der volle Inhalt der QuelleYi, Sung, M. Fouad Ahmad und H. H. Hilton. „Dynamic Responses of Plates With Viscoelastic Free Layer Damping Treatment“. Journal of Vibration and Acoustics 118, Nr. 3 (01.07.1996): 362–67. http://dx.doi.org/10.1115/1.2888191.
Der volle Inhalt der QuelleHetnarski, Richard B., Ray A. West und Joseph S. Torok. „Damping of Vibrations of Layered Elastic-Viscoelastic Beams“. Applied Mechanics Reviews 46, Nr. 11S (01.11.1993): S305—S311. http://dx.doi.org/10.1115/1.3122651.
Der volle Inhalt der QuelleHujare, Pravin P., und Anil D. Sahasrabudhe. „Effect of Thickness of Damping Material on Vibration Control of Structural Vibration in Constrained Layer Damping Treatment“. Applied Mechanics and Materials 592-594 (Juli 2014): 2031–35. http://dx.doi.org/10.4028/www.scientific.net/amm.592-594.2031.
Der volle Inhalt der QuelleIoannides, E., und P. Grootenhuis. „A Finite Element Analysis of the Harmonic Response of Damped Five-Layer Plates“. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 199, Nr. 4 (Oktober 1985): 311–17. http://dx.doi.org/10.1243/pime_proc_1985_199_128_02.
Der volle Inhalt der QuelleGandhi, Farhan, und Brian Munsky. „Effectiveness of Active Constrained Layer Damping Treatments in Attenuating Resonant Oscillations“. Journal of Vibration and Control 8, Nr. 6 (Juni 2002): 747–75. http://dx.doi.org/10.1177/1077546029188.
Der volle Inhalt der QuelleWang, Tao, Ryan Murphy, Jing Wang, Shyam S. Mohapatra, Subhra Mohapatra und Rasim Guldiken. „Perturbation Analysis of a Multiple Layer Guided Love Wave Sensor in a Viscoelastic Environment“. Sensors 19, Nr. 20 (18.10.2019): 4533. http://dx.doi.org/10.3390/s19204533.
Der volle Inhalt der QuelleHunt, G., H. Mühlhaus, B. Hobbs und A. Ord. „Localized folding of viscoelastic layers“. Geologische Rundschau 85, Nr. 1 (1996): 58. http://dx.doi.org/10.1007/s005310050052.
Der volle Inhalt der QuelleHandge, U. A., I. M. Sokolov und A. Blumen. „Fragmentation of viscoelastic surface layers“. Europhysics Letters (EPL) 40, Nr. 3 (01.11.1997): 275–80. http://dx.doi.org/10.1209/epl/i1997-00460-0.
Der volle Inhalt der QuelleDissertationen zum Thema "Viscoelastic Layers"
Aumaitre, Elodie. „Viscoelastic properties of hydrophobin layers“. Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.607660.
Der volle Inhalt der QuelleRavish, Masti Sarangapany. „Vibration damping analysis of cylindrical shells partially coated with constrained visco-elastic layers“. Hong Kong : University of Hong Kong, 2001. http://sunzi.lib.hku.hk/hkuto/record.jsp?B23000867.
Der volle Inhalt der QuelleRavish, Masti Sarangapany. „Vibration damping analysis of cylindrical shells partially coated withconstrained visco-elastic layers“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31242169.
Der volle Inhalt der QuelleSlanik, Marta. „A numerical and experimental investigation of steel beams damped with constrained viscoelastic layers“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape11/PQDD_0027/MQ50664.pdf.
Der volle Inhalt der QuelleSher, Branca Rosa Ribeiro Leite de Sousa. „Optimisation of viscoelastic treatments using genetic algorithms“. Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12431.
Der volle Inhalt der QuelleViscoelastic treatments are one of the most efficient treatments, as far as passive damping is concerned, particularly in the case of thin and light structures. In this type of treatment, part of the strain energy generated in the viscoelastic material is dissipated to the surroundings, in the form of heat. A layer of viscoelastic material is applied to a structure in an unconstrained or constrained configuration, the latter proving to be the most efficient arrangement. This is due to the fact that the relative movement of both the host and constraining layers cause the viscoelastic material to be subjected to a relatively high strain energy. There are studies, however, that claim that the partial application of the viscoelastic material is just as efficient, in terms of economic costs or any other form of treatment application costs. The application of patches of material in specific and selected areas of the structure, thus minimising the extension of damping material, results in an equally efficient treatment. Since the damping mechanism of a viscoelastic material is based on the dissipation of part of the strain energy, the efficiency of the partial treatment can be correlated to the modal strain energy of the structure. Even though the results obtained with this approach in various studies are considered very satisfactory, an optimisation procedure is deemed necessary. In order to obtain optimum solutions, however, time consuming numerical simulations are required. The optimisation process to use the minimum amount of viscoelastic material is based on an evolutionary geometry re-design and calculation of the modal damping, making this procedure computationally costly. To avert this disadvantage, this study uses adaptive layerwise finite elements and applies Genetic Algorithms in the optimisation process.
Os tratamentos viscoelásticos permitem amortecer estruturas finas e leves de uma forma bastante eficiente. Neste tipo de amortecimento passivo, parte da energia de deformação é dissipada pelo material viscoelástico sob a forma de calor. O material viscoelástico é aplicado à superfície de uma estrutura e pode ser, ou não, restringido por uma camada de restrição. Dentro destas duas possibilidades, o tratamento com restrição é o que apresenta maior eficiência. Isto deve-se ao facto de que o movimento relativo das camadas adjacentes impõe uma elevada deformação de corte ao material viscoelástico. De um modo geral, a minimização da extensão da aplicação do material viscoelástico sob a forma de tratamentos parciais localizados torna-se benéfico em termos de custo, quer económico, quer qualquer outra forma de custo associado à aplicação do tratamento. A aplicação de pequenas porções de material sobre áreas específicas e selecionadas torna o tratamento igualmente eficiente, segundo estudos e resultados apresentados por vários autores. Como mencionado anteriormente, o mecanismo de amortecimento do material viscoelástico baseia-se na dissipação de parte da energia de deformação. Este facto permite relacionar a eficiência do tratamento parcial com a energia de deformação modal da estrutura para cada um dos modos naturais. Não obstante os bons resultados obtidos na abordagem desta técnica, este método requer a aplicação de um processo de otimização que conduza a uma solução ótima. Todavia, a simulação numérica deste processo de otimização, exige um elevado custo computacional pois é baseado num processo evolutivo de redesenho da geometria e cálculo do amortecimento modal por forma a utilizar o mínimo de material possível. Baseado nestes pressupostos, este estudo utiliza elementos finitos de camada discreta adaptativos associados a um processo de otimização com base em Algoritmos Genéticos. Este procedimento permite desenvolver um método de otimização de baixo custo computacional e objetivo.
Hall, Braydon Day. „The Dynamic Analysis of a Composite Overwrapped Gun Barrel with Constrained Viscoelastic Damping Layers Using the Modal Strain Energy Method“. DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1972.
Der volle Inhalt der QuelleLázaro, Navarro Mario. „The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approaches and the Equivalent Viscous Model“. Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/30062.
Der volle Inhalt der QuelleLázaro Navarro, M. (2013). The Eigenvalue Problem in Linear Viscoelastic Structures: New Numerical Approaches and the Equivalent Viscous Model [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/30062
TESIS
Sibley, David N. „Viscoelastic flows of PTT fluid“. Thesis, University of Bath, 2010. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.518114.
Der volle Inhalt der QuelleSpears, Mark William. „Microgel-based coatings and their use as self-healing, dynamic substrates for bioapplications“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/53060.
Der volle Inhalt der QuelleJeung, Yeun S. „Finite element analysis for sandwich structures with a viscoelastic-constrained layer /“. Thesis, Connect to this title online; UW restricted, 1998. http://hdl.handle.net/1773/9999.
Der volle Inhalt der QuelleBücher zum Thema "Viscoelastic Layers"
Borcherdt, Roger D. Viscoelastic waves in layered media. New York: Cambridge University Press, 2008.
Den vollen Inhalt der Quelle findenBateman, Michael John. Constrained viscoelastic layer damping of thick aluminum plates: Design, analysis and testing. Monterey, Calif: Naval Postgraduate School, 1990.
Den vollen Inhalt der Quelle findenBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBorcherdt, Roger. Viscoelastic Waves in Layered Media. Cambridge University Press, 2018.
Den vollen Inhalt der Quelle findenBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBorcherdt, Roger D. Viscoelastic Waves in Layered Media. Cambridge University Press, 2009.
Den vollen Inhalt der Quelle findenBorcherdt, Roger. Viscoelastic Waves and Rays in Layered Media. University of Cambridge ESOL Examinations, 2020.
Den vollen Inhalt der Quelle findenBorcherdt, Roger. Viscoelastic Waves and Rays in Layered Media. Cambridge University Press, 2020.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Viscoelastic Layers"
Argatov, Ivan, und Gennady Mishuris. „Frictionless Contact of Thin Viscoelastic Layers“. In Advanced Structured Materials, 99–147. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20083-5_4.
Der volle Inhalt der QuelleScholle, Markus, Marcel Mellmann, Philip H. Gaskell, Lena Westerkamp und Florian Marner. „Multilayer Modelling of Lubricated Contacts: A New Approach Based on a Potential Field Description“. In Springer Tracts in Mechanical Engineering, 359–75. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60124-9_16.
Der volle Inhalt der QuelleQin, Sheng, Xuefeng Tang, Xianbin Du, Lifei Zhu, Yifeng Wei, Osung Kwon, Jiajie Fang, Ping Wang und Da-Ming Zhu. „Mechanical and Viscoelastic Properties of Polymer Layers on Solid-Liquid Interfaces“. In IUTAM Symposium on Surface Effects in the Mechanics of Nanomaterials and Heterostructures, 217–28. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-4911-5_19.
Der volle Inhalt der QuelleAl Ali, Rana, Elhem Ghorbel, Mohamed Dallel und Boumediene Nedjar. „Mechanical Modelling of Ancient Textiles with a 2-layers Viscoelastic-Plastic Model“. In Lecture Notes in Mechanical Engineering, 251–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14615-2_29.
Der volle Inhalt der QuelleWang, Ping, Jiajie Fang, Yihong Kang, Sheng Qin, Osung Kwan und Da-Ming Zhu. „Probing Viscoelastic Properties of Polymer Solution Boundary Layers Using Quartz Crystal Resonator“. In IUTAM Symposium on Recent Advances of Acoustic Waves in Solids, 415–24. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9893-1_43.
Der volle Inhalt der QuelleRoussel, Jean-Marie, Hervé Di Benedetto, Cédric Sauzéat und Michaël Broutin. „Influence of Linear Viscoelastic Behaviour of Pavement Layers Interface for Heavy Weight Deflectometer Test“. In RILEM Bookseries, 1087–94. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-46455-4_138.
Der volle Inhalt der QuelleBiswal, Deepak Kumar, und Sukesh Chandra Mohanty. „Free Vibration Analysis of Multilayer Skew Sandwich Spherical Shell Panels with Viscoelastic Material Cores and Isotropic Constraining Layers“. In Vibration Engineering for a Sustainable Future, 201–7. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47618-2_25.
Der volle Inhalt der QuelleTownsend Valencia, Patrick Roger, Juan Carlos Suárez Bermejo, Paz Pinilla Cea und Estela Sanz Horcajo. „Evaluation of the Damage in Composite Materials Modified with Viscoelastic Layers for the Hull of Boats Subjected to Slamming Impacts“. In Proceeding of the VI International Ship Design & Naval Engineering Congress (CIDIN) and XXVI Pan-American Congress of Naval Engineering, Maritime Transportation and Port Engineering (COPINAVAL), 347–56. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35963-8_29.
Der volle Inhalt der QuellePoliakov, A. N. B., P. A. Cundall, Y. Y. Podladchikov und V. A. Lyakhovsky. „An Explicit Inertial Method for the Simulation of Viscoelastic Flow: An Evaluation of Elastic Effects on Diapiric Flow in Two- and Three- Layers Models“. In Flow and Creep in the Solar System: Observations, Modeling and Theory, 175–95. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8206-3_12.
Der volle Inhalt der QuelleGusev, Boris V., und Alexander S. Faivusovich. „Forced Vibrations of the System: Structure – Viscoelastic Layer“. In Recent Advances in Mechanics, 79–89. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0557-9_6.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Viscoelastic Layers"
Wang, Z., Z. B. Chen und M. Z. Li. „Added Viscoelastic Wheel Dampers for Reducing Railway Noise“. In ASME 2008 International Mechanical Engineering Congress and Exposition. ASMEDC, 2008. http://dx.doi.org/10.1115/imece2008-66310.
Der volle Inhalt der QuelleKoguchi, Hideo, und Atsushi Ueno. „Thermo-Viscoelastic Analysis for Warpage in CSP With Different Viscoelastic Properties for Several Layers“. In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33591.
Der volle Inhalt der QuelleNayfeh, Samir A., und Alexander H. Slocum. „Flexural Vibration of a Viscoelastic Sandwich Beam in its Plane of Lamination“. In ASME 1997 Design Engineering Technical Conferences. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/detc97/vib-4071.
Der volle Inhalt der QuelleNilton, Maurício M., André V. Cavalieri, Maurício V. Donadon und William Wolf. „Acoustic scattering by laminated plates with viscoelastic layers“. In 25th AIAA/CEAS Aeroacoustics Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-2529.
Der volle Inhalt der QuelleTepe, R., R. Gerhard-Multhaupt und W. Brinker. „Viscoelastic Control Layers For Solid-State Light Valves“. In 30th Annual Technical Symposium, herausgegeben von William A. Penn. SPIE, 1986. http://dx.doi.org/10.1117/12.936475.
Der volle Inhalt der QuelleYi, Sung, M. Fouad Ahmad und Harry H. Hilton. „Dynamic Responses of Plates With Viscoelastic Damping Treatment“. In ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0133.
Der volle Inhalt der QuelleGeerligs, Marion, Gerrit W. M. Peters, Paul A. J. Ackermans, Cees W. J. Oomens und Frank P. T. Baaijens. „Linear Viscoelastic Behavior of Adipose Tissue“. In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192712.
Der volle Inhalt der QuelleRenardy, Michael. „Corner Singularities and High Weissenberg Number Asymptotics for Viscoelastic Fluids“. In ASME 1996 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/imece1996-0230.
Der volle Inhalt der QuelleSakarya, Serhat, Gleb V. Vdovin und Lina Sarro. „Technology of spatial light modulators based on viscoelastic layers“. In Photonics, Devices, and Systems II, herausgegeben von Miroslav Hrabovsky, Dagmar Senderakova und Pavel Tomanek. SPIE, 2003. http://dx.doi.org/10.1117/12.498467.
Der volle Inhalt der QuelleOh, J., S. Poh, M. Ruzzene und A. Baz. „Vibration Control of Beams Using Electro-Magnetic Damping Treatment“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0558.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Viscoelastic Layers"
Vecherin, Sergey, Stephen Ketcham, Aaron Meyer, Kyle Dunn, Jacob Desmond und Michael Parker. Short-range near-surface seismic ensemble predictions and uncertainty quantification for layered medium. Engineer Research and Development Center (U.S.), September 2022. http://dx.doi.org/10.21079/11681/45300.
Der volle Inhalt der QuelleKorovaytseva, Ekaterina A., Sergey G. Pshenichnov, Todor Zhelyazov und Maria Datcheva. On the Problem of Nonstationary Waves Propagation in a Linear-viscoelastic Layer. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, Mai 2021. http://dx.doi.org/10.7546/crabs.2021.05.13.
Der volle Inhalt der QuelleRose, Luo und Minachi. ZZ44154 Circumferential Guided Waves for Defect Detection in Tar Coated Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Januar 2008. http://dx.doi.org/10.55274/r0010958.
Der volle Inhalt der QuelleFisher, K., O. Mays, D. Obenauf und J. Chang. Exploring the feasibility of crack detection in plate weldments through an interposed layer of viscoelastic material. Office of Scientific and Technical Information (OSTI), Juli 2018. http://dx.doi.org/10.2172/1466114.
Der volle Inhalt der Quelle