Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Virtual Remote Education“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Virtual Remote Education" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Virtual Remote Education"
Gurina, I. A., O. A. Medvedeva und O. V. Shpak. „REMOTE VIRTUAL LABORATORY IN MODERN ENGINEERING EDUCATION“. Современные проблемы науки и образования (Modern Problems of Science and Education), Nr. 6 2020 (2020): 28. http://dx.doi.org/10.17513/spno.30285.
Der volle Inhalt der QuelleGrodotzki, Joshua, Tobias R. Ortelt und A. Erman Tekkaya. „Remote and Virtual Labs for Engineering Education 4.0“. Procedia Manufacturing 26 (2018): 1349–60. http://dx.doi.org/10.1016/j.promfg.2018.07.126.
Der volle Inhalt der QuelleMatveev, Anton, Olesia Makhnytkina, Yuri Matveev, Aleksei Svischev, Polina Korobova, Alexandr Rybin und Artem Akulov. „Virtual Dialogue Assistant for Remote Exams“. Mathematics 9, Nr. 18 (10.09.2021): 2229. http://dx.doi.org/10.3390/math9182229.
Der volle Inhalt der QuelleHeradio, Ruben, Luis de la Torre und Sebastian Dormido. „Virtual and remote labs in control education: A survey“. Annual Reviews in Control 42 (2016): 1–10. http://dx.doi.org/10.1016/j.arcontrol.2016.08.001.
Der volle Inhalt der QuelleHeradio, Ruben, Luis de la Torre, Daniel Galan, Francisco Javier Cabrerizo, Enrique Herrera-Viedma und Sebastian Dormido. „Virtual and remote labs in education: A bibliometric analysis“. Computers & Education 98 (Juli 2016): 14–38. http://dx.doi.org/10.1016/j.compedu.2016.03.010.
Der volle Inhalt der QuelleOhnigian, Sarah, Jeremy B. Richards, Derek L. Monette und David H. Roberts. „Optimizing Remote Learning: Leveraging Zoom to Develop and Implement Successful Education Sessions“. Journal of Medical Education and Curricular Development 8 (Januar 2021): 238212052110207. http://dx.doi.org/10.1177/23821205211020760.
Der volle Inhalt der QuelleAntonio, Caroline Porto, João Paulo Lima, João Bosco Alves, Juarez Bento Silva und José Pedro Simão. „Merging a Remote Microscope and Virtual Worlds: Teaching Kingdom Plantae on Basic Education“. International Journal of Online Engineering (iJOE) 12, Nr. 04 (28.04.2016): 27. http://dx.doi.org/10.3991/ijoe.v12i04.5095.
Der volle Inhalt der QuelleJara, Carlos A., Francisco A. Candelas, Fernando Torres, Sebastién Dormido und Francisco Esquembre. „Synchronous collaboration of virtual and remote laboratories“. Computer Applications in Engineering Education 20, Nr. 1 (24.08.2009): 124–36. http://dx.doi.org/10.1002/cae.20380.
Der volle Inhalt der QuelleChandrasekar, V., Yoong-Goog Cho, D. Brunkow und A. Jayasumana. „Virtual CSU-CHILL Radar: The VCHILL“. Journal of Atmospheric and Oceanic Technology 22, Nr. 7 (01.07.2005): 979–87. http://dx.doi.org/10.1175/jtech1745.1.
Der volle Inhalt der QuelleSolak, Serdar, Önder Yakut und Emine Dogru Bolat. „Design and Implementation of Web-Based Virtual Mobile Robot Laboratory for Engineering Education“. Symmetry 12, Nr. 6 (01.06.2020): 906. http://dx.doi.org/10.3390/sym12060906.
Der volle Inhalt der QuelleDissertationen zum Thema "Virtual Remote Education"
Rouse, Matthew David. „Design and evaluation of a remote access hydraulic manipulator for system dynamics and controls education“. Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/18943.
Der volle Inhalt der QuelleFightmaster, Carmen D. „Nutrition Education to Promote Healthy Packed Lunch at School“. University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1617106897895685.
Der volle Inhalt der QuelleAbdulwahed, Mahmoud. „Towards enhancing laboratory education by the development and evaluation of the "TriLab" : a triple access mode (virtual, hands-on and remote) laboratory“. Thesis, Loughborough University, 2010. https://dspace.lboro.ac.uk/2134/6355.
Der volle Inhalt der QuelleVenant, Rémi. „Les learning analytics pour promouvoir l'engagement et la réflexion des apprenants en situation d'apprentissage pratique“. Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30164/document.
Der volle Inhalt der QuellePractical activities, used in exploratory learning, represent a major component of education: they make learners acquire not only knowledge, but also skills and attitude, and they help them bridging the gap between theories and the real world within they are applied. However, the physical laboratories hosting these activities rely on expensive infrastructures that make very difficult for institutions to cope with the high increase of the students' population. Within this context, virtual and remote laboratories (VRL) bring an affordable alternative to provide practical activities at scale. Numerous research works have come up for the last decade; they mainly focused on technological issues such as the federation of remote laboratories, their standardization, or the pooling of the resources they provide. Nevertheless, the recent literature reviews highlight the need to pay more attention to the educational facets of these innovative learning environments. With that purpose in mind, our works make use of the learners' traces collected through their practical learning sessions to sustain socio-constructivist theories, on which practical activities rely on, and thus to engage students in their learning tasks and further their reflection. Starting from the study of scientific research, we identify as a first step a set of criteria required to design practical learning systems that support social interactions between learners. We then developed Lab4CE, a web-based environment for Computer Science education. This environment relies on a cloud computing architecture to provide learners with their own virtual resources, and hides the complexity of the inherent management tasks while offering advanced educational capabilities. Indeed, Lab4CE builds on learning analytics to enable different forms of learning such as collaboration, cooperation, or peer assistance, but also to supply learners as well as teachers awareness and reflection tools that aim at promoting deep learning during and after practical activities. We carried out several experimentations in authentic and hands-on learning contexts. They stressed the fact that learners evaluate positively the usability of Lab4CE, and they significantly rely on our awareness and reflection tools. However, extra artifacts are required to increase their spontaneous engagement in social learning interactions. Moreover, theses experimentations suggested a significant correlation between, on the one hand, student's activity in the environment and the learning strategies they apply and, on the other hand, their academic performance. These first results allow us to assess that socio-constructivist theories leverage engagement and reflection within VRL. They also invite us to put our approach into practice in other learning settings, but also to extend the sources of information to deal with our behavioral analyses in depth, and thus to enhance our contributions regarding the adoption of practical learning within technological environments
Ortega, Alcides [UNESP]. „Laboratório remoto de qualidade da energia elétrica em ambiente virtual“. Universidade Estadual Paulista (UNESP), 2011. http://hdl.handle.net/11449/87090.
Der volle Inhalt der QuelleConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Este trabalho apresenta um portal de educação à distância que integra várias funcionalidades direcionadas ao aperfeiçoamento do ensino de Engenharia Elétrica. Possui ambiente para videoconferência, acesso a webcam robótica e demais recursos tradicionalmente utilizados em aplicações similares bastante difundidas. Destaca-se a concepção e implantação de um Laboratório de Qualidade de Energia para acesso remoto via Internet, LRQEE. O Laboratório dispõe de vários recursos visando-se flexibilidade e agilidade na integração entre diferentes instituições de ensino. Contribui, assim, para a evolução do aprendizado e racionalização de recursos financeiros, evitando-se duplicidade de equipamentos, sobretudo aqueles mais específicos e de maior custo. Permite acesso a diversos equipamentos, como fontes harmônicas programáveis, sistemas de aquisição de dados, sensores e configuração e acionamento de cargas elétricas. Todos os procedimentos são realizados remotamente sob uma interface gráfica amigável constituindo-se, assim, um importante instrumento para apoio ao ensino colaborativo, com práticas experimentais realizadas à distância, visando consolidar o aprendizado
This work presents a distance learning portal that integrates several functionalities addressed to the improvement of the teaching of Electric Engineering. It possesses a video conference environment, access to a robotics webcam and other resources traditionally used in widespread similar applications. It can be stands out the conception and implantation of a Laboratory of Quality of Energy for remote access through Internet, LRQEE. The Laboratory has several resources aiming the flexibility and agility in the integration among different teaching institutions. It contributes, therefore, for the evolution of the learning and rationalization of financial resources, avoiding duplicity of equipments, mainly the more specific ones and of greater cost. It allows access to several equipments, such as programmable harmonic sources, data acquisition systems, sensors and configuration and electric loads drive. All of the procedures are carried out remotely under a friendly graphic interface performing an important instrument for supporting the teaching, seeking to consolidate the learning
Ogiboski, Luciano. „Laboratório remoto baseado em software livre para realização de experimentos didáticos“. Universidade de São Paulo, 2007. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-28042009-172833/.
Der volle Inhalt der QuelleThis work presents the development of a data acquisition system to control experiments in measurement instruments through GPIB interface. The system created is intended to be applied for educational purposes, thus it was integrated to an online learning environment, enabling remote access to real instruments, to be used in e-learning courses. It was used an open source environment with interactive tools and easy management. Chose system allows modular e-learning courses creation, which learning components or interactive resources can be selected independently. The aim was to create a new module, representing a remote laboratory, to perform data acquisition experiments in instruments. It was proposed a modular architecture to remote laboratory based on open source technologies. It includes Web Services architecture to integrate data acquisition system and distance education environment. This research presents a differential approach for remote instrumentation. It represents not only an internet extension for laboratory, but also offer distance education interactive resources to improve user communication.
Ortega, Alcides. „Laboratório remoto de qualidade da energia elétrica em ambiente virtual /“. Ilha Solteira : [s.n.], 2011. http://hdl.handle.net/11449/87090.
Der volle Inhalt der QuelleBanca: Luís Carlos Origa de Oliveira
Banca: Aguinaldo Lenine Alves
Resumo: Este trabalho apresenta um portal de educação à distância que integra várias funcionalidades direcionadas ao aperfeiçoamento do ensino de Engenharia Elétrica. Possui ambiente para videoconferência, acesso a webcam robótica e demais recursos tradicionalmente utilizados em aplicações similares bastante difundidas. Destaca-se a concepção e implantação de um Laboratório de Qualidade de Energia para acesso remoto via Internet, LRQEE. O Laboratório dispõe de vários recursos visando-se flexibilidade e agilidade na integração entre diferentes instituições de ensino. Contribui, assim, para a evolução do aprendizado e racionalização de recursos financeiros, evitando-se duplicidade de equipamentos, sobretudo aqueles mais específicos e de maior custo. Permite acesso a diversos equipamentos, como fontes harmônicas programáveis, sistemas de aquisição de dados, sensores e configuração e acionamento de cargas elétricas. Todos os procedimentos são realizados remotamente sob uma interface gráfica amigável constituindo-se, assim, um importante instrumento para apoio ao ensino colaborativo, com práticas experimentais realizadas à distância, visando consolidar o aprendizado
Abstract: This work presents a distance learning portal that integrates several functionalities addressed to the improvement of the teaching of Electric Engineering. It possesses a video conference environment, access to a robotics webcam and other resources traditionally used in widespread similar applications. It can be stands out the conception and implantation of a Laboratory of Quality of Energy for remote access through Internet, LRQEE. The Laboratory has several resources aiming the flexibility and agility in the integration among different teaching institutions. It contributes, therefore, for the evolution of the learning and rationalization of financial resources, avoiding duplicity of equipments, mainly the more specific ones and of greater cost. It allows access to several equipments, such as programmable harmonic sources, data acquisition systems, sensors and configuration and electric loads drive. All of the procedures are carried out remotely under a friendly graphic interface performing an important instrument for supporting the teaching, seeking to consolidate the learning
Mestre
Adams, Jessica. „Assessment Scores of Remote and In-Person Learning for Grades Three - Six Students in an East Tennessee School District“. Digital Commons @ East Tennessee State University, 2021. https://dc.etsu.edu/etd/3979.
Der volle Inhalt der QuelleJohansson, Megan. „Teachers' Lived Experiences of the Virtual Learning Environment: A Phenomenological Inquiry“. Thesis, Luleå tekniska universitet, Institutionen för hälsa, lärande och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-85127.
Der volle Inhalt der QuelleSuarez, Yauri Carmen Rosa. „Relevancia de la retroalimentación formativa en una institución educativa inicial en la modalidad de aprendizaje remoto“. Bachelor's thesis, Pontificia Universidad Católica del Perú, 2021. http://hdl.handle.net/20.500.12404/19883.
Der volle Inhalt der QuelleBücher zum Thema "Virtual Remote Education"
Bernd, Scholz-Reiter, Rügge Ingrid, Hong Bonghee, Rizzi Antonio und SpringerLink (Online service), Hrsg. The Impact of Virtual, Remote, and Real Logistics Labs: First International Conference, ImViReLL 2012 Bremen, Germany, February 28 – March 1, 2012 Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Den vollen Inhalt der Quelle findenLangmann, Reinhard, und Michael E. Auer. Smart Industry & Smart Education: Proceedings of the 15th International Conference on Remote Engineering and Virtual Instrumentation. Springer, 2018.
Den vollen Inhalt der Quelle findenMurray, W. Bosseau, Sorin Vaduva und Benjamin W. Berg. Telemedicine, Teleanesthesia, and Telesurgery. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190495756.003.0033.
Der volle Inhalt der QuelleSchrier, Karen. We the Gamers. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190926106.001.0001.
Der volle Inhalt der QuelleOliveira, Mário Cézar Amorim de, Nilson de Souza Cardoso und Jaqueline Rabelo de Lima. Itinerários de resistência: pluralidade e laicidade no Ensino de Ciências e Biologia. Editora Realize, 2021. http://dx.doi.org/10.46943/viii.enebio.2021.01.000.
Der volle Inhalt der QuelleBuchteile zum Thema "Virtual Remote Education"
Choi, Kwansun, Saeron Han, Sunghwan Kim, Dongsik Kim, Jongsik Lim, Dal Ahn und Changwan Jeon. „A Combined Virtual and Remote Laboratory for Microcontroller“. In Hybrid Learning and Education, 66–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03697-2_7.
Der volle Inhalt der QuelleFrerich, Sulamith, Daniel Kruse, Marcus Petermann und Andreas Kilzer. „Virtual Labs and Remote Labs: Practical Experience for Everyone“. In Engineering Education 4.0, 229–34. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46916-4_18.
Der volle Inhalt der QuelleCallaghan, Michael James, Gildas Bengloan, Julien Ferrer, Léo Cherel, Mohamed Ali El Mostadi, Augusto Gomez Eguíluz und Niall McShane. „Voice Driven Virtual Assistant Tutor in Virtual Reality for Electronic Engineering Remote Laboratories“. In Smart Industry & Smart Education, 570–80. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95678-7_63.
Der volle Inhalt der QuelleSulema, Yevgeniya, Ivan Dychka und Olga Sulema. „Multimodal Data Representation Models for Virtual, Remote, and Mixed Laboratories Development“. In Smart Industry & Smart Education, 559–69. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95678-7_62.
Der volle Inhalt der QuelleLeão, Celina P., Filomena Soares, Helena Rodrigues, Eurico Seabra, José Machado, Pedro Farinha und Sandra Costa. „Web-Assisted Laboratory for Control Education: Remote and Virtual Environments“. In Communications in Computer and Information Science, 62–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28816-6_7.
Der volle Inhalt der QuelleHoffmann, Max, Tobias Meisen und Sabina Jeschke. „Shifting Virtual Reality Education to the Next Level – Experiencing Remote Laboratories Through Mixed Reality“. In Engineering Education 4.0, 235–49. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46916-4_19.
Der volle Inhalt der QuelleTzafestas, Costas S. „Web-Based Laboratory on Robotics: Remote vs. Virtual Training in Programming Manipulators“. In Web-Based Control and Robotics Education, 195–225. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2505-0_9.
Der volle Inhalt der QuelleLustigova, Zdena, und Frantisek Lustig. „A New Virtual and Remote Experimental Environment for Teaching and Learning Science“. In Education and Technology for a Better World, 75–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03115-1_8.
Der volle Inhalt der QuelleGalan, Daniel, Luis de la Torre, Dictino Chaos und Ernesto Aranda. „Combining Virtual and Remote Interactive Labs and Visual/Textual Programming: The Furuta Pendulum Experience“. In Smart Industry & Smart Education, 100–109. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95678-7_11.
Der volle Inhalt der QuelleNedungadi, Prema, Maneesha Vinodini Ramesh, Preeja Pradeep und Raghu Raman. „Pedagogical Support for Collaborative Development of Virtual and Remote Labs: Amrita VLCAP“. In Cyber-Physical Laboratories in Engineering and Science Education, 219–40. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76935-6_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Virtual Remote Education"
Samoila, C., D. Ursutiu und V. Jinga. „Remote experiment and virtual sensors“. In 2016 IEEE Global Engineering Education Conference (EDUCON). IEEE, 2016. http://dx.doi.org/10.1109/educon.2016.7474670.
Der volle Inhalt der QuelleKondo, Daisuke, Hiroyuki Suzuki, Ryugo Kijima und Taro Maeda. „Remote education system using virtual anatomical model“. In 2010 16th International Conference on Virtual Systems and Multimedia (VSMM). IEEE, 2010. http://dx.doi.org/10.1109/vsmm.2010.5665930.
Der volle Inhalt der QuelleAntonio, Caroline Porto, Joao Paulo Cardoso De Lima, Joao Bosco da MotaAlves, Roderval Marcelino, Juarez Bento da Silva und Jose Pedro Schardosim Simao. „Remote experiments and 3D virtual world in education“. In 2015 3rd Experiment International Conference (exp.at'15). IEEE, 2015. http://dx.doi.org/10.1109/expat.2015.7463216.
Der volle Inhalt der QuelleZhang, Chengcheng, und Jinyao Yan. „Analysis of virtual desktop remote protocol“. In 2013 International Conference on Information and Communication Technology for Education. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/icte130111.
Der volle Inhalt der QuelleBowtell, Les, Clint Moloney, Alexander A. Kist, Victoria Parker, Andrew Maxwell und Natasha Reedy. „Using Remote Access Laboratories in nursing education“. In 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV). IEEE, 2012. http://dx.doi.org/10.1109/rev.2012.6293148.
Der volle Inhalt der QuelleVillar-Zafra, A., S. Zarza-Sanchez, J. A. Lazaro-Villa und R. M. Fernandez-Canti. „Multiplatform virtual laboratory for engineering education“. In 2012 9th International Conference on Remote Engineering and Virtual Instrumentation (REV). IEEE, 2012. http://dx.doi.org/10.1109/rev.2012.6293127.
Der volle Inhalt der QuelleRukangu, Andrew, Alexander Tuttle und Kyle Johnsen. „Virtual Reality for Remote Controlled Robotics in Engineering Education“. In 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW). IEEE, 2021. http://dx.doi.org/10.1109/vrw52623.2021.00258.
Der volle Inhalt der QuelleAhmad, Adizul, Mohd Khairi Nordin, Mohammad Farid Saaid, Juliana Johari, Rosni Abu Kassim und Yuslina Zakaria. „Remote control temperature chamber for virtual laboratory“. In 2017 IEEE 9th International Conference on Engineering Education (ICEED). IEEE, 2017. http://dx.doi.org/10.1109/iceed.2017.8251194.
Der volle Inhalt der QuelleRestivo, Maria Teresa, Antonio Mendes Lopes, Liliane dos Santos Machado und Ronei Marcos de Moraes. „Adding tactile information to remote & virtual labs“. In 2011 IEEE Global Engineering Education Conference (EDUCON). IEEE, 2011. http://dx.doi.org/10.1109/educon.2011.5773287.
Der volle Inhalt der QuellePastor-Vargas, R., Ll Tobarra, S. Ros, R. Hernandez, A. Caminero, A. Robles, M. Castro, G. Diaz, E. Sancristobal und M. Tawfik. „Integration of management services for remote/virtual laboratories“. In 2014 IEEE Global Engineering Education Conference (EDUCON). IEEE, 2014. http://dx.doi.org/10.1109/educon.2014.6826155.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Virtual Remote Education"
Groeneveld, Caspar, Elia Kibga und Tom Kaye. Deploying an e-Learning Environment in Zanzibar: Feasibility Assessment. EdTech Hub, Juli 2020. http://dx.doi.org/10.53832/edtechhub.0028.
Der volle Inhalt der Quelle