Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Virtual generator“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Virtual generator" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Virtual generator"
Hao, Xiaohong, Huimin Wang, Bei Peng, Zhi Yao, Yixiong Wang und Mingfei Gu. „Research on the virtual synchronous generator control strategy of grid-connected permanent-magnet direct-driven wind power system“. Thermal Science 22, Suppl. 2 (2018): 401–8. http://dx.doi.org/10.2298/tsci171012252h.
Der volle Inhalt der QuelleZhang, Guanfeng, Junyou Yang, Haixin Wang und Jia Cui. „Presynchronous Grid-Connection Strategy of Virtual Synchronous Generator Based on Virtual Impedance“. Mathematical Problems in Engineering 2020 (09.11.2020): 1–9. http://dx.doi.org/10.1155/2020/3690564.
Der volle Inhalt der QuelleMohammed, O. O., A. O. Otuoze, S. Salisu, O. Ibrahim und N. A. Rufa’i. „Virtual synchronous generator: an overview“. Nigerian Journal of Technology 38, Nr. 1 (16.01.2019): 153. http://dx.doi.org/10.4314/njt.v38i1.20.
Der volle Inhalt der QuelleMiyaji, Yutaka, und Ken Tomiyama. „Implementation Approach of Affective Interaction for Caregiver Support Robot“. Journal of Robotics and Mechatronics 25, Nr. 6 (20.12.2013): 1060–69. http://dx.doi.org/10.20965/jrm.2013.p1060.
Der volle Inhalt der QuelleXu, Haizhen, Changzhou Yu, Chun Liu, Qinglong Wang und Xing Zhang. „An Improved Virtual Inertia Algorithm of Virtual Synchronous Generator“. Journal of Modern Power Systems and Clean Energy 8, Nr. 2 (2020): 377–86. http://dx.doi.org/10.35833/mpce.2018.000472.
Der volle Inhalt der QuelleTektas, Gozde. „Design of a Virtual Function Generator for Signal Generation“. Advances in Applied Sciences 2, Nr. 2 (2017): 23. http://dx.doi.org/10.11648/j.aas.20170202.12.
Der volle Inhalt der QuelleSu, Jianjun, Wenbo Li, Hengjie Liu, Fanmin Meng, Long Wang und Xueshan Han. „Application of Virtual Synchronous Generator in Solar Power Generation“. Journal of Physics: Conference Series 1087 (September 2018): 062060. http://dx.doi.org/10.1088/1742-6596/1087/6/062060.
Der volle Inhalt der QuelleAmin, Md Ruhul, und Shamsul Aizam Zulkifli. „Modelling of Virtual Synchronous Converter for Grid-Inverter Synchronization in Microgrids Applications“. International Journal of Power Electronics and Drive Systems (IJPEDS) 7, Nr. 4 (01.12.2016): 1377. http://dx.doi.org/10.11591/ijpeds.v7.i4.pp1377-1385.
Der volle Inhalt der QuelleMcNally, Kevin, Richard Cotton, Alex Hogg und George Loizou. „PopGen: A virtual human population generator“. Toxicology 315 (Januar 2014): 70–85. http://dx.doi.org/10.1016/j.tox.2013.07.009.
Der volle Inhalt der QuelleLee, Chun-Yao, und Maickel Tuegeh. „Virtual Visualization of Generator Operation Condition through Generator Capability Curve“. Energies 14, Nr. 1 (01.01.2021): 185. http://dx.doi.org/10.3390/en14010185.
Der volle Inhalt der QuelleDissertationen zum Thema "Virtual generator"
Islam, Md Ashraful. „IMPLEMENTATION OF VIRTUAL SYNCHRONOUS GENERATOR METHODOLOGIES FOR RENEWABLE INTEGRATION“. Master's thesis, Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/482193.
Der volle Inhalt der QuelleM.S.E.E.
In conventional centralized power systems, power is generated mostly by large synchronous generators (SGs), where the frequency of the grid depends on the rotational frequency of the prime mover. If there are any sudden changes in the load, the rotor inertia property restrains the changes in frequency and keeps the system stable. During transient periods, rotor kinetic energy of the rotor is injected into the grid to balance power supply between generation and load. With the recent high penetration of renewable energy sources (RES), the power grid is undergoing structural changes with an increased inverter-based distributed generation. Since inverter based power sources do not have inertia as conventional synchronous machines (SM), high penetration of inverters may cause instability and sharp voltage fluctuations in the grid. If inverter based power sources could be configured as regular SM by introducing virtual inertia and damping property, many of the problems, such as frequency regulation, islanded operation, and parallel operation of inverter-based DGs will be resolved. This thesis investigates mathematical modeling and control of VSG’s to emulate the inertia and damping property of SMs. Simulation results are presented on the modeling and closed-loop performance of VSGs for an island microgrid.
Temple University--Theses
Paquette, Andrew Donald. „Power quality and inverter-generator interactions in microgrids“. Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51803.
Der volle Inhalt der QuelleRunzi, Zhang. „Virtual-Channel Based Wormhole NoC on FPGA for ForSyDe/NoC System Generator Tool Suite“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230624.
Der volle Inhalt der QuelleKyle, Stephen Christopher. „Applications of information sharing for code generation in process virtual machines“. Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/25446.
Der volle Inhalt der QuelleNovosád, Boris. „Simulační modelování elektromagnetického vibračního generátoru“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2009. http://www.nusl.cz/ntk/nusl-228738.
Der volle Inhalt der QuelleMarques, Felipe de Souza. „Technology mapping for virtual libraries based on cells with minimal transistor stacks“. reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2008. http://hdl.handle.net/10183/16130.
Der volle Inhalt der QuelleCurrently, microelectronic technologies enable high degrees of semiconductor integration. However, this integration makes the design, verification, and test challenges more difficult. The circuit design is often the first area under assault by the effects of aggressive scaling in deep-submicron technologies. Therefore, designers have adopted strict methodologies to deal with the challenge of developing high quality designs on a reasonable time. Electronic Design Automation tools play an important role, automating some of the design phases and helping the designer to find a good solution faster. One of the hardest challenges of an integrated circuit design is to meet the timing requirements. It depends on several steps of the synthesis flow. In standard cell based flows, it is directly related to the technology mapping algorithm and the cells available in the library. The performance of a cell is directly related to the transistor sizing and the cell topology. It determines the timing, power and area characteristics of a cell. Technology mapping has a major impact on the structure of the circuit, and on its delay and area characteristics. The quality of the mapped circuit depends on the richness of the cell library. This thesis proposes two different approaches for library-free technology mapping aiming delay reduction in combinational circuits. Both algorithms rely on a cell topology able to implement Boolean functions using minimal transistors stacks. They reduce the overall number of serial transistors through the longest path, considering that each transistor network of a cell has to obey to a maximum admitted chain. The mapping algorithms are integrated to a cell generator that creates cells with minimal transistor stacks. This cell generator is also in charge of performing the transistor sizing. Significant gains can be obtained in delay due to both aspects combined into the proposed mapping tool.
Bilík, Petr. „Virtuální měřicí přístroje pro podporu výuky“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442484.
Der volle Inhalt der QuelleSeshadri, Satyanarayanan. „Solid particle transport behavior and the effect of aerosol mass loading on performance of a slit virtual impactor“. Thesis, Texas A&M University, 2004. http://hdl.handle.net/1969.1/538.
Der volle Inhalt der QuelleMoulichon, Audrey. „Conception d'un système adaptatif dynamique de "générateur synchrone virtuel" pour la stabilisation des micro-réseaux électriques à fort taux de pénétration d'énergie renouvelable“. Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT064.
Der volle Inhalt der QuelleThe classical distributed energy resources (DER) supplying energy to microgrids (usually diesel generator-sets) are progressively supplanted by supplier based on renewable energy sources (RES). However, the intermittency of RES leads to major stability issues, especially in the context of microgrids, notably because these sources usually decrease the available inertia of the grid. Hence, the traditional control strategies for inverters, interfacing the various DERs connected to the microgrid, needs adapting.The virtual synchronous generator (VSG) is one of the most popular solution that can participate in increasing the microgrids inertia and that could be integrated into traditional stability studies because it presents similarities with a synchronous machine. As the VSG is still a recent concept, mostly considered for the DER integration in microgrid, various problematics remain unresolved (some of which are addressed in this manuscript). In addition, the different solutions that can be found in the literature do not consider the industrial and practical aspect of its development (also considered in this industrial thesis).This thesis is dedicated to the VSG-based inverters and their integration in microgrids with a high level of variable renewable energy penetration. This PhD have been carried out thanks to the cooperation between two laboratories, G2Elab and Gipsa-Lab, in collaboration with Schneider Electric and its R&D team, Power Conversion
Verhulst, Adrien. „Étude de Faisabilité d'Études Consommateurs d'Achat de Fruits et Légumes « Moches » dans un Supermarché Virtuel“. Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0016/document.
Der volle Inhalt der QuelleThe retail sector has an anti-waste policyand has therefore offered “ugly” FaVs (Fruits and Vegetables) for sale as early as 2014 [109]. But these sales remain temporary and local and have little studied effects on consumer behavior. We propose here to study if an immersive virtual store (in which we control the FaVs) can be used to study consumer behavior confronted to “ugly” FaVs To have enough “ugly” FaVs to fill the virtual store, we developed a method capable of generatings emiprocedural FaVs. To do so we: (1) generate the mesh with Generalized Cylinders (GCs) [6]; then (2) generate the colors with a particle system.We conducted 2 comparative studies (N=142 andN=196 respectively). The first study focused on consumer behavior when the FaVs are abnormal (8 FaVs separated into 4groups: no deformation, slightly deformed, deformed and strongly deformed). These differences had no impact on consumer behavior. The other study focused on consumer behavior when the environment is more or less immersive (8 FaVs without deformation and 8 FaVs with deformation, separated into 3 groups: laboratory store, non immersive virtual store and immersive virtual store).There are differences between these environments on consumer behavior. Finally, we studied if the virtual representation of the consumer had an impact during the purchase of products (including, but not limited to, FaVs). To do so we carried out a third consumer study (N=29) (2groups: obese avatar and non-obese avatar). There are very localized differences between these representations on consumer behavior
Bücher zum Thema "Virtual generator"
Carlile, Simon. Virtual Auditory Space: Generation and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-662-22594-3.
Der volle Inhalt der QuelleHello avatar: Rise of the networked generation. Cambridge, Mass: MIT Press, 2011.
Den vollen Inhalt der Quelle findenElena, Ewing, Hrsg. Virtual scanning: The next generation of healthcare : beyond biomedicine. [Cotgrave, Nottinghamshire, England: Montague Healthcare, 2007.
Den vollen Inhalt der Quelle findenSerbinski, Theodore Joseph. Design of electronic experiments using computer generated virtual instruments. Monterey, Calif: Naval Postgraduate School, 1994.
Den vollen Inhalt der Quelle findenVirtual faith: The irreverent spiritual quest of generation X. San Francisco: Jossey-Bass, 1998.
Den vollen Inhalt der Quelle findenPujolle, G., und Otto Carlos M. B. Duarte. Virtual networks: Pluralistic approach for the next generation of internet. London, UK: ISTE, 2013.
Den vollen Inhalt der Quelle findenHarders, Matthias. Surgical Scene Generation for Virtual Reality-Based Training in Medicine. London: Springer London, 2008. http://dx.doi.org/10.1007/978-1-84800-107-7.
Der volle Inhalt der QuelleHarders, Matthias. Surgical scene generation for virtual reality based training in medicine. London: Springer, 2008.
Den vollen Inhalt der Quelle findenDigital beauties: 2D & 3D computer generated digital models, virtual idols and characters. Köln: Taschen, 2002.
Den vollen Inhalt der Quelle findenSavage, Charles M. Fifth generation management: Co-creating through virtual enterprising, dynamic teaming, and knowledge networking. Boston: Butterworth-Heinemann, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Virtual generator"
Lee, Jina, und Stacy Marsella. „Nonverbal Behavior Generator for Embodied Conversational Agents“. In Intelligent Virtual Agents, 243–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11821830_20.
Der volle Inhalt der QuelleRaje, Rajeev R., Daniel J. Pease, Sanjay D. Jejurikar und Neng T. Lin. „A Graphical Hierarchical Flowchart Generator for Parallel Fortran Programs“. In Communicating with Virtual Worlds, 523. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68456-5_43.
Der volle Inhalt der QuellePulka, Andrzej. „Modeling Assistant — A Flexible VCM Generator in VHDL“. In Virtual Components Design and Reuse, 171–82. Boston, MA: Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3275-7_13.
Der volle Inhalt der QuelleJadhav, Ganesh N., Sadik J. Shaikh und Omkar N. Buwa. „Challenges in Implementation of Virtual Synchronous Generator“. In ISGW 2017: Compendium of Technical Papers, 209–21. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8249-8_18.
Der volle Inhalt der QuelleGil, Kyungwon, Taejin Ha und Woontack Woo. „DigiLog Space Generator for Tele-Collaboration in an Augmented Reality Environment“. In Virtual Augmented and Mixed Reality. Designing and Developing Augmented and Virtual Environments, 343–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39405-8_38.
Der volle Inhalt der QuelleZenkoyoh, Masaki, und Ken Tomiyama. „Surprise Generator for Virtual KANSEI Based on Human Surprise Characteristics“. In Lecture Notes in Computer Science, 190–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21793-7_23.
Der volle Inhalt der QuelleLu, Lei, Xuefei Li, Yang Kuang, Jie Chen und Ruichang Qiu. „Parallel Control of Auxiliary Inverter Based on Virtual Synchronous Generator“. In Lecture Notes in Electrical Engineering, 117–25. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2862-0_11.
Der volle Inhalt der QuelleYin, Weigang, Lian Chen, Feng Li, Baochen Wang, Zhou He und Ge Jin. „A Reconfigurable Virtual Nuclear Pulse Generator via the Inversion Method“. In Springer Proceedings in Physics, 398–402. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-1313-4_76.
Der volle Inhalt der QuelleDaili, Yacine, und Abdelghani Harrag. „New Virtual Synchronous Generator Control Technique of Distributed Generator Unit to Improve Transient Response of the Microgrid“. In Lecture Notes in Electrical Engineering, 361–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6403-1_25.
Der volle Inhalt der QuelleLiu, Yajin, Jiang Guo, Peng Liu, Lin Zhou und Jin Jiang. „Virtual Reality Based Nuclear Steam Generator Ageing and Life Management Systems“. In Advances in Neural Networks – ISNN 2009, 1230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01513-7_137.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Virtual generator"
Nara, Yuto, Genki Kunitomi, Yukua Koide, Wataru Fujimura und Akihiko Shirai. „Manga generator“. In VRIC 2013: Virtual Reality International Conference - Laval Virtual. New York, NY, USA: ACM, 2013. http://dx.doi.org/10.1145/2466816.2466845.
Der volle Inhalt der QuelleAlipoor, Jaber, Yushi Miura und Toshifumi Ise. „Distributed generation grid integration using virtual synchronous generator with adoptive virtual inertia“. In 2013 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2013. http://dx.doi.org/10.1109/ecce.2013.6647309.
Der volle Inhalt der QuelleHu, Yalong, Wei Wei, Yonggang Peng und Jinyong Lei. „Fuzzy virtual inertia control for virtual synchronous generator“. In 2016 35th Chinese Control Conference (CCC). IEEE, 2016. http://dx.doi.org/10.1109/chicc.2016.7554718.
Der volle Inhalt der QuelleHensel, Burkhard, und Klaus Kabitzsch. „Generator for modular virtual sensors“. In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 2016. http://dx.doi.org/10.1109/etfa.2016.7733726.
Der volle Inhalt der QuelleAlor-Hernandez, Giner, Ruben Posada-Gomez, Ulises Juarez-Martinez, Gustavo Pelaez-Camarena und Maria Antonieta Abud-Figueroa. „VEGITO: A Virtual Enterprise Generator“. In 2009 Mexican International Conference on Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/enc.2009.36.
Der volle Inhalt der QuelleFrerichs, David J. „Portable virtual environment generator: InterFACE“. In IS&T/SPIE 1994 International Symposium on Electronic Imaging: Science and Technology, herausgegeben von Scott S. Fisher, John O. Merritt und Mark T. Bolas. SPIE, 1994. http://dx.doi.org/10.1117/12.173897.
Der volle Inhalt der QuelleAbuagreb, Mohamed, Babatunde Ajao, Hess Herbert und Brian K. Johnson. „Evaluation of Virtual Synchronous Generator Compared to Synchronous Generator“. In 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). IEEE, 2020. http://dx.doi.org/10.1109/isgt45199.2020.9087692.
Der volle Inhalt der QuelleJianhui Meng, Xinchun Shi, Yi Wang und Chao Fu. „A virtual synchronous generator control strategy for distributed generation“. In 2014 China International Conference on Electricity Distribution (CICED). IEEE, 2014. http://dx.doi.org/10.1109/ciced.2014.6991757.
Der volle Inhalt der QuelleMin, Wei, Xie Yan und Jia Yu. „The design of virtual signal generator“. In 2012 IEEE International Conference on Computer Science and Automation Engineering (CSAE). IEEE, 2012. http://dx.doi.org/10.1109/csae.2012.6272537.
Der volle Inhalt der QuelleZhou, W., Z. Xiaosong, Y. Xufeng und X. Wei. „Review on virtual synchronous generator technologies“. In The 16th IET International Conference on AC and DC Power Transmission (ACDC 2020). Institution of Engineering and Technology, 2021. http://dx.doi.org/10.1049/icp.2020.0253.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Virtual generator"
Smith, David J., und Yong-Hang Zhang. Novel Virtual Substrates for Future Generation IR Photodetectors. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2014. http://dx.doi.org/10.21236/ada613845.
Der volle Inhalt der QuelleShannon, Jameson, Cody Strack und Robert Moser. Constituent materials characterization for virtual concrete microstructure generation. Engineer Research and Development Center (U.S.), Juni 2019. http://dx.doi.org/10.21079/11681/33054.
Der volle Inhalt der QuelleFeiner, Steven. Automated Generation of Three-Dimensional Virtual Worlds for Task Explanation. Fort Belvoir, VA: Defense Technical Information Center, Februar 1992. http://dx.doi.org/10.21236/ada254664.
Der volle Inhalt der QuelleFeiner, Steven. Automated Generation of Three-Dimensional Virtual Worlds for Task Explanation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1992. http://dx.doi.org/10.21236/ada254722.
Der volle Inhalt der QuelleTraum, David, Michael Fleischman und Eduard Hovy. NL Generation for Virtual Humans in a Complex Social Environment. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada459528.
Der volle Inhalt der QuelleFeiner, Steven. Automated Generation of Three-Dimensional Virtual Worlds for Task Explanation. Fort Belvoir, VA: Defense Technical Information Center, November 1991. http://dx.doi.org/10.21236/ada247859.
Der volle Inhalt der QuelleEkstrand, Laura. Virtual tool mark generation for efficient striation analysis in forensic science. Office of Scientific and Technical Information (OSTI), Januar 2012. http://dx.doi.org/10.2172/1082973.
Der volle Inhalt der QuelleGlezer, Ari, Mark G. Allen, Anthony J. Calise, Anthony Leonard, James M. McMichael, Robert D. Moser und Arne J. Pearlstein. Dynamic Flight Maneuvering Using Virtual Control Surfaces Generated by Trapped Vorticity. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2010. http://dx.doi.org/10.21236/ada550638.
Der volle Inhalt der QuelleShaw, Timothy, Anthony Baratta und Vaughn Whisker. Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Task 5 Report: Generation IV Reactor Virtual Mockup Proof-of-Principle Study. Office of Scientific and Technical Information (OSTI), Februar 2005. http://dx.doi.org/10.2172/837149.
Der volle Inhalt der QuelleWatson, Thomas. Urban Dispersion Virtual Workshop: Designing the Next Generation Urban Dispersion Field Programs. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1469782.
Der volle Inhalt der Quelle