Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Virtual fields“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Virtual fields" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Virtual fields"
Toussaint, Evelyne, Michel Grédiac und Fabrice Pierron. „The virtual fields method with piecewise virtual fields“. International Journal of Mechanical Sciences 48, Nr. 3 (März 2006): 256–64. http://dx.doi.org/10.1016/j.ijmecsci.2005.10.002.
Der volle Inhalt der QuelleMarek, Aleksander, Frances M. Davis und Fabrice Pierron. „Sensitivity-based virtual fields for the non-linear virtual fields method“. Computational Mechanics 60, Nr. 3 (28.04.2017): 409–31. http://dx.doi.org/10.1007/s00466-017-1411-6.
Der volle Inhalt der QuelleTran, V., Stephane Avril und Fabrice Pierron. „Software Implementation of the Virtual Fields Method“. Applied Mechanics and Materials 7-8 (August 2007): 57–62. http://dx.doi.org/10.4028/www.scientific.net/amm.7-8.57.
Der volle Inhalt der QuelleKravtsov, Yu A., und P. Ya Ufimtsev. „Actualization of Virtual Fields in Wave Problems“. Journal of Electromagnetic Waves and Applications 3, Nr. 3 (01.01.1989): 257–67. http://dx.doi.org/10.1163/156939389x00485.
Der volle Inhalt der QuelleGriffiths, Sean. „Virtual Corpses, Figural Sections and Resonant Fields“. Architectural Design 81, Nr. 5 (September 2011): 68–77. http://dx.doi.org/10.1002/ad.1296.
Der volle Inhalt der QuelleGrédiac, Michel, und Fabrice Pierron. „Numerical issues in the virtual fields method“. International Journal for Numerical Methods in Engineering 59, Nr. 10 (05.02.2004): 1287–312. http://dx.doi.org/10.1002/nme.914.
Der volle Inhalt der QuelleFeng, Chuxuan, und Jiawei Shao. „Application of Virtual Reality in Different Fields“. Highlights in Science, Engineering and Technology 44 (13.04.2023): 213–19. http://dx.doi.org/10.54097/hset.v44i.7325.
Der volle Inhalt der QuelleKnight, Travis W., G. Ronald Dalton und James S. Tulenko. „Virtual Radiation Fields—A Virtual Environment Tool for Radiological Analysis and Simulation“. Nuclear Technology 117, Nr. 2 (Februar 1997): 255–66. http://dx.doi.org/10.13182/nt97-a35330.
Der volle Inhalt der QuelleGrédiac, Michel, und Fabrice Pierron. „Identifying Constitutive Parameters from Heterogeneous Strain Fields using the Virtual Fields Method“. Procedia IUTAM 4 (2012): 48–53. http://dx.doi.org/10.1016/j.piutam.2012.05.006.
Der volle Inhalt der QuelleGREDIAC, M. „Principe de la methode des champs virtuels avec champs speciauxPrinciple of the virtual fields method with special virtual fields“. M�canique & Industries 4, Nr. 6 (November 2003): 679–86. http://dx.doi.org/10.1016/j.mecind.2003.09.010.
Der volle Inhalt der QuelleDissertationen zum Thema "Virtual fields"
Martin, Richard Luis. „Wavelet approximation of GRID fields for virtual screening“. Thesis, University of Sheffield, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.531509.
Der volle Inhalt der QuelleBeckhaus, Steffi. „Dynamic potential fields for guided exploration in virtual environments“. [S.l. : s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=965713253.
Der volle Inhalt der QuelleMortensen, J. „Virtual light fields for global illumination in computer graphics“. Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1302284/.
Der volle Inhalt der QuelleBeckhaus, Steffi [Verfasser]. „Dynamic Potential Fields for Guided Exploration in Virtual Environments / Steffi Beckhaus“. Aachen : Shaker, 2003. http://d-nb.info/1172608962/34.
Der volle Inhalt der QuelleKrólewiak, Adam. „Stereoscopic and interactive visualization of electromagnetic fields in virtual reality environments“. Artois, 2004. http://www.theses.fr/2004ARTO0204.
Der volle Inhalt der QuelleThe thesis is devoted to the methods of electromagnetic fields' scientific visualization set in multidimensional virtual reality environment which gives spatial image and interaction with data space. Developed methods concern three domains: graphical methods of scientific data presentation, human-machine communication and realization of stereoscopy. In order to present volumetric and vector features the standard methods were adopted: colored maps (interactively cutting data set), isosurfaces and cones (vectors). The method of navigation within data space, objects' manipulation and control of application using menu system were developed. The most interesting method is numerical data querying directly from graphical objects realized based on the author's data structures. Much attention was devoted to stereo image creation and its influence on the space perception improvement. The result is the method of stereo parameters' automatic calculation
Zhu, Haibin. „A novel methodology for high strain rate testing using full-field measurements and the virtual fields methods“. Thesis, Troyes, 2015. http://www.theses.fr/2015TROY0007/document.
Der volle Inhalt der QuelleThis work focuses on the development of a novel experimental procedure for high strain rate testing of materials. The underpinning novelty of this work is the use of the full-field acceleration maps as a volume distributed load cell, avoiding the need for impact force measurement. To identify the constitutive parameters of materials from the full-field data, the Virtual Fields Method (VFM) based on the principle of virtual work is used here. In dynamics, using the VFM, it is possible to define particular virtual fields which can zero out the virtual work of the external forces. Instead, the acceleration obtained through second order temporal differentiation from displacement can be used as a load cell. Finally, the elastic parameters can be identified directly from a linear system which is built up through rewriting the principle of virtual work with as many independent virtual fields as unknowns. Thus, external force measurement is avoided, which is highly beneficial as it is difficult to measure in dynamics. This procedure is first numerically validated through finite element simulations and then experimentally implemented using different impact setups. Both results confirm that inertial effects can be used to identify the material parameters without the need for impact force measurements, also relieving the usual requirements for uniform/uniaxial stress in SHPB like test configurations. This exciting development has the potential to lead to new standard testing techniques at high strain rates
Lin, Jeng-Weei James. „Enhancement of user-experiences in immersive virtual environments that employ wide-field displays /“. Thesis, Connect to this title online; UW restricted, 2004. http://hdl.handle.net/1773/10680.
Der volle Inhalt der QuelleSmith, Michael John. „Sandstorm a dynamics multi-contextual GPU-based particle system using vector fields for particle propagation /“. abstract and full text PDF (free order & download UNR users only), 2008. http://0-gateway.proquest.com.innopac.library.unr.edu/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:1453635.
Der volle Inhalt der QuelleYoon, Sung-ho. „Applications of the virtual fields method to the mechanical behaviour of rubbers under dynamic loading“. Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:1a1294b8-8759-41bc-bb53-fc0abbf69f2f.
Der volle Inhalt der QuelleAyiter, Elif. „Ground : a metaverse learning strategy for the creative fields“. Thesis, University of Plymouth, 2012. http://hdl.handle.net/10026.1/1244.
Der volle Inhalt der QuelleBücher zum Thema "Virtual fields"
Pierron, Fabrice, und Michel Grédiac. The Virtual Fields Method. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1824-5.
Der volle Inhalt der QuellePierron, Fabrice. The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements. Boston, MA: Springer US, 2012.
Den vollen Inhalt der Quelle findenNikolaeva, Tat'yana. Virtual professional practice for students of speech pathologists. ru: INFRA-M Academic Publishing LLC., 2023. http://dx.doi.org/10.12737/2099006.
Der volle Inhalt der QuelleGarry, Cooper, Hrsg. Virtual field trips. Englewood, Colo: Libraries Unlimited, 1997.
Den vollen Inhalt der Quelle findenGarry, Cooper, und Cooper Gail 1950-, Hrsg. New virtual field trips. Englewood, Colo: Libraries Unlimited/Teacher Ideas Press, 2001.
Den vollen Inhalt der Quelle findenPeden, Norman. Virtual field trips: An ecologial modelling toolkit. Manchester: University of Manchester, Department of Computer Science, 1997.
Den vollen Inhalt der Quelle finden1947-, Bookstein Fred L., Hrsg. Virtual anthropology: A guide to a new interdisciplinary field. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenMandel, Scott M. Virtual field trips in the cyberage: A content mapping approach. Arlington Heights, IL: SkyLight Professional Development, 1999.
Den vollen Inhalt der Quelle findenFoley, Kim. The Big Pocket Guide to Using & Creating Virtual Field Trips. Spokane, WA: Persistent Vision, 2001.
Den vollen Inhalt der Quelle findenA, Wisher Robert, Hrsg. The virtual sand table: Intelligent tutoring for field artillery training. Alexandria, Va: U.S. Army Research Institute for the Behavioral and Social Sciences, 2001.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Virtual fields"
Hayem, Raphael, Tancrede Fourmaintraux, Keran Petit, Nicolas Rauber und Olga Kisseleva. „Avatars: New Fields of Implication“. In Virtual Worlds, 406–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/3-540-68686-x_39.
Der volle Inhalt der QuelleGrédiac, Michel, Fabrice Pierron, Stéphane Avril, Evelyne Toussaint und Marco Rossi. „Virtual Fields Method, The“. In Full-Field Measurements and Identification in Solid Mechanics, 301–30. Hoboken, NJ USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118578469.ch11.
Der volle Inhalt der QuelleBrasselet, Jean-Paul, José Seade und Tatsuo Suwa. „The Virtual Classes“. In Vector fields on Singular Varieties, 185–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05205-7_11.
Der volle Inhalt der QuelleBrasselet, Jean-Paul, José Seade und Tatsuo Suwa. „The Virtual Index“. In Vector fields on Singular Varieties, 85–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-05205-7_5.
Der volle Inhalt der QuelleSchmitz, Wouter. „Propagators and Virtual Particles“. In Particles, Fields and Forces, 113–43. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12878-4_10.
Der volle Inhalt der QuelleSchmitz, Wouter. „Propagators and Virtual Particles“. In Particles, Fields and Forces, 119–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-98753-4_10.
Der volle Inhalt der QuellePierron, Fabrice, und Michel Grédiac. „Introduction, Main Equations and Notations“. In The Virtual Fields Method, 3–19. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1824-5_1.
Der volle Inhalt der QuellePierron, Fabrice, und Michel Grédiac. „Design of New Tests for the VFM“. In The Virtual Fields Method, 353–74. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1824-5_10.
Der volle Inhalt der QuellePierron, Fabrice, und Michel Grédiac. „The VFM for Force Reconstruction“. In The Virtual Fields Method, 375–93. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1824-5_11.
Der volle Inhalt der QuellePierron, Fabrice, und Michel Grédiac. „Case Study I: Standard and Funny Isotropic Discs“. In The Virtual Fields Method, 397–415. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-1824-5_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Virtual fields"
Anderson, Matthew E., Janet Bowers, Dustin Thoman, Elizabeth Flynn, Adrian Larios, India Wishart, Molly Horner et al. „Seeing Virtually: An Exploration into Teaching E&M in Virtual Reality“. In Frontiers in Optics, JTu4A.4. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jtu4a.4.
Der volle Inhalt der QuelleHadjimichael, George. „The colorful fields could vitalize our towns: from two-fields model to fourteen-fields model“. In Virtual cities and territories. Coimbra: Department of Civil Engineering of the University of Coimbra and e-GEO, Research Center in Geography and Regional Planning of the Faculty of Social Sciences and Humanities of the Nova University of Lisbon, 2011. http://dx.doi.org/10.5821/ctv.7787.
Der volle Inhalt der QuelleSchillebeeckx, Ian, und Robert Pless. „Using Chromo-coded light fields for augmented reality“. In 2016 IEEE Virtual Reality (VR). IEEE, 2016. http://dx.doi.org/10.1109/vr.2016.7504763.
Der volle Inhalt der QuelleZimmer, Dana, Matthew Gomez, Christopher Jennings, Clayton Myers, Nichelle Bennett, F. Conti und F. Beg. „Understanding the impact of applied magnetic fields on Z machine current coupling.“ In Proposed for presentation at the SSAP held February 15-17, 2022 in virtual, virtual virtual. US DOE, 2022. http://dx.doi.org/10.2172/2001726.
Der volle Inhalt der Quellede Oliveira, Jose Aelio, Luiz Lima, Gil Eduardo de Andrade und Gisane Michelon. „Anycasting in DTNs using virtual magnetic fields“. In 2014 IEEE 11th Consumer Communications and Networking Conference (CCNC). IEEE, 2014. http://dx.doi.org/10.1109/ccnc.2014.6994396.
Der volle Inhalt der QuelleGu, Yiting, und Qiyue Wang. „Application of Virtual Reality in Different Fields“. In 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). IEEE, 2022. http://dx.doi.org/10.1109/icdsca56264.2022.9988426.
Der volle Inhalt der QuellePrime, M. „Integrating sign language into a virtual reality environments“. In IEE Colloquium on Visualisation of Three-Dimensional Fields. IEE, 1995. http://dx.doi.org/10.1049/ic:19951283.
Der volle Inhalt der QuelleLiu, Bangrui, und Aimin Hao. „Real-time path planning in emergency using non-uniform safety fields“. In 2014 IEEE Virtual Reality (VR). IEEE, 2014. http://dx.doi.org/10.1109/vr.2014.6802067.
Der volle Inhalt der QuelleMarek, Aleksander, Frances M. Davis und Fabrice Pierron. „Sheet metals characterization using the virtual fields method“. In PROCEEDINGS OF THE 21ST INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2018. Author(s), 2018. http://dx.doi.org/10.1063/1.5035068.
Der volle Inhalt der QuellePut, Jeroen, und Philippe Bekaert. „Real-time relighting previews with virtual light fields“. In 2012 International Conference on 3D Imaging (IC3D). IEEE, 2012. http://dx.doi.org/10.1109/ic3d.2012.6615133.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Virtual fields"
Knight, T. W. Virtual radiation fields for ALARA determination. Office of Scientific and Technical Information (OSTI), Dezember 1995. http://dx.doi.org/10.2172/672123.
Der volle Inhalt der QuelleJones, Elizabeth M. C., Jay Carroll, Kyle N. Karlson, Sharlotte LorraineBolyard Kramer, Richard B. Lehoucq, Phillip L. Reu, Daniel Thomas Seidl und Daniel Z. Turner. High-throughput Material Characterization using the Virtual Fields Method. Office of Scientific and Technical Information (OSTI), September 2018. http://dx.doi.org/10.2172/1474817.
Der volle Inhalt der QuelleKramer, Sharlotte Lorraine Bolyard, und William M. Scherzinger. Implementation and Evaluation of the Virtual Fields Method: Determining Constitutive Model Parameters From Full-Field Deformation Data. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1158669.
Der volle Inhalt der QuelleBalandina, Nadiya. STRUCTURE OF MEDIAENVIRONMENT THROUGH THE PRISM OF LEXICAL INNOVATIONS. Ivan Franko National University of Lviv, März 2024. http://dx.doi.org/10.30970/vjo.2024.54-55.12167.
Der volle Inhalt der QuelleHill, Christian. International Atomic and Molecular Code Centres Network: Virtual Atomic and Molecular Data Centres Consortium Annual Meeting. International Atomic Energy Agency, November 2023. http://dx.doi.org/10.61092/iaea.s57n-ra6p.
Der volle Inhalt der QuelleWisher, Robert A., Douglas H. Macpherson, L. J. Abramson, David M. Thronton und James J. Dees. The Virtual Sand Table: Intelligent Tutoring for Field Artillery Training. Fort Belvoir, VA: Defense Technical Information Center, März 2001. http://dx.doi.org/10.21236/ada392596.
Der volle Inhalt der QuelleWilliamson, M. C., R. H. Rainbird, J. Froome und O. Brown. A virtual geological field trip across Victoria Island, Northwest Territories. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2013. http://dx.doi.org/10.4095/292435.
Der volle Inhalt der QuelleDMITRIENKO, B. Ch, O. A. KOVALEVA und E. A. RUBETS. VR TECHNOLOGIES AS A MEANS OF VIRTUAL MUSEUM PEDAGOGY. Science and Innovation Center Publishing House, April 2022. http://dx.doi.org/10.12731/2658-4034-2022-13-1-2-63-70.
Der volle Inhalt der QuelleWatson, Thomas. Urban Dispersion Virtual Workshop: Designing the Next Generation Urban Dispersion Field Programs. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1469782.
Der volle Inhalt der QuelleHutchinson, Simon, und Nataliia Popovych. Supporting Geography in Ukraine’s universities: the Virtual Field Trips for Ukraine Initiative. Royal Geographical Society (with IBG), März 2023. http://dx.doi.org/10.55203/iwzm2598.
Der volle Inhalt der Quelle