Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vinyl polymerization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vinyl polymerization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vinyl polymerization"
Zhang, Jinghan, Yibo Wu, Kaixuan Chen, Min Zhang, Liangfa Gong, Dan Yang, Shuxin Li und Wenli Guo. „Characteristics and Mechanism of Vinyl Ether Cationic Polymerization in Aqueous Media Initiated by Alcohol/B(C6F5)3/Et2O“. Polymers 11, Nr. 3 (14.03.2019): 500. http://dx.doi.org/10.3390/polym11030500.
Der volle Inhalt der QuelleReddy, Sirish K., Neil B. Cramer, Michael Kalvaitas, Tai Yeon Lee und Christopher N. Bowman. „Mechanistic Modelling and Network Properties of Ternary Thiol - Vinyl Photopolymerizations“. Australian Journal of Chemistry 59, Nr. 8 (2006): 586. http://dx.doi.org/10.1071/ch06193.
Der volle Inhalt der QuelleDayter, Lily A., Kate A. Murphy und Devon A. Shipp. „RAFT Polymerization of Monomers with Highly Disparate Reactivities: Use of a Single RAFT Agent and the Synthesis of Poly(styrene-block-vinyl acetate)“. Australian Journal of Chemistry 66, Nr. 12 (2013): 1564. http://dx.doi.org/10.1071/ch13375.
Der volle Inhalt der QuelleSatoh, Kotaro, und Masami Kamigaito. „Sequence-Controlled Vinyl Polymers by Transition Metal-Catalyzed Step-Growth and Living Radical Polymerizations“. MRS Proceedings 1613 (2014): 17–21. http://dx.doi.org/10.1557/opl.2014.153.
Der volle Inhalt der QuelleSchlappa, Stephanie, Lee Josephine Brenker, Lena Bressel, Roland Hass und Marvin Münzberg. „Process Characterization of Polyvinyl Acetate Emulsions Applying Inline Photon Density Wave Spectroscopy at High Solid Contents“. Polymers 13, Nr. 4 (23.02.2021): 669. http://dx.doi.org/10.3390/polym13040669.
Der volle Inhalt der QuelleKumakura, Minoru, und Isao Kaetsu. „Radiation polymerization of 2-hydroxyethyl methacrylate-vinyl pyrrolidone-water system“. Collection of Czechoslovak Chemical Communications 53, Nr. 6 (1988): 1242–46. http://dx.doi.org/10.1135/cccc19881242.
Der volle Inhalt der QuelleWang, Di, Zhen Yu Cao und Qi Wang. „Study of Copolymerization Mechanism between Vinyl-POSS and Citronellal with Quantum Chemistry Program Based on DFT“. Advanced Materials Research 391-392 (Dezember 2011): 1498–502. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.1498.
Der volle Inhalt der QuelleIHARA, Eiji. „Challenge to Vinyl Polymerization“. Kobunshi 56, Nr. 1 (2007): 34. http://dx.doi.org/10.1295/kobunshi.56.34.
Der volle Inhalt der QuelleSawamoto, Mitsuo. „Modern cationic vinyl polymerization“. Progress in Polymer Science 16, Nr. 1 (Januar 1991): 111–72. http://dx.doi.org/10.1016/0079-6700(91)90008-9.
Der volle Inhalt der QuelleOlaj, Oskar Friedrich. „Electrolytically initiated vinyl polymerization“. Makromolekulare Chemie. Macromolecular Symposia 8, Nr. 1 (März 1987): 235–54. http://dx.doi.org/10.1002/masy.19870080119.
Der volle Inhalt der QuelleDissertationen zum Thema "Vinyl polymerization"
Dorobantu, Ioana-Miruna. „Vinyl chloride polymerization in microdroplet reactor“. Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0037/document.
Der volle Inhalt der QuelleVinyl chloride suspension polymerization is a common reaction in polymer industry allowing to obtain one of the world wide most used plastics, known as PVC (polyvinyl chloride). Its applications involve mostly the construction industry but other domains are also concerned. This polymerization process is highly complex due to the toxic nature of the monomer, the good manage of heat transfer and agitation. The control of these process variables directly impacts the characteristics of the final product. Even though the suspension polymerization of vinyl chloride has been extensively studied in batch reactors, there is a lack of data regarding the kinetics or the physicochemistry of a single monomer droplet during the reactions. The aim of this present work is to propose a microstructured device which enables obtaining monodisperse droplets within 200 µm in diameter, each one being considered as a polymerization reactor. After a good acknowledgement of the vinyl chloride/water system in microchannel the polymerization reaction was qualitatively described by means of droplet/polymer grain visualization. Real-time non-invasive Raman measurement has been performed on stationary vinyl chloride monomer droplets and has provided values of kinetic constants. A theoretical model was proposed, simulating the reaction conversion in good agreement with the experimental values. The morphologic characteristics of the PVC grains obtained in microreactor presented interesting features in terms of primary particle agglomeration or porosity
De, Bruyn Hank. „The Emulsion Polymerization of Vinyl Acetate“. Thesis, The University of Sydney, 1999. http://hdl.handle.net/2123/381.
Der volle Inhalt der QuelleDe, Bruyn Hank. „The Emulsion Polymerization of Vinyl Acetate“. University of Sydney, Chemistry, 1999. http://hdl.handle.net/2123/381.
Der volle Inhalt der QuelleVale, Hugo. „Population Balance Modeling of Emulsion Polymerization Reactors : applications to Vinyl Chloride Polymerization“. Lyon 1, 2007. http://www.theses.fr/2007LYO10034.
Der volle Inhalt der QuelleCette thèse est une contribution au développement de modèles mécanistiques de la polymérisation en émulsion et, plus particulièrement, une contribution à la modélisation de la formation des particules et de leur distribution de taille (DTP) lors de la polymérisation en émulsion du chlorure de vinyle. La première partie de l'étude est consacrée à l'obtention de données expérimentales. Des polymérisations ab initio ont été réalisées afin d'obtenir des données fiables sur l'effet de la concentration de tensioactif, concentration d'initiateur, vitesse d'agitation et rapport monomère/eau sur le nombre de particules formées et sur la cinétique de polymérisation. Des polymérisations ensemencées ont également été réalisées afin de déterminer l'influence de la quantité de semence et de la concentration de tensioactif sur la formation de particules par nucléation secondaire. Enfin, les isothermes d'adsorption du SDS et du SDBS sur des particules de latex de poly (chlorure de vinyle) ont été déterminées. La deuxième partie de l'étude concerne le développement et la validation du modèle de polymérisation. Celui-ci à la particularité d'utiliser les bilans de population propres aux systèmes ‘zéro-un-deux' pour déterminer la distribution jointe du nombre de radicaux et de la taille des particules. Dans l'ensemble, les résultats obtenus montrent que le modèle proposé est capable de décrire les principaux comportements retrouvés lors des polymérisations avec des valeurs physiquement plausibles des paramètres inconnus ou ajustables. Pour ce qui concerne la formation des particules, il s'avère que la prise en compte de la possibilité de nucléation (homogène ou micellaire) par les radicaux désorbés aide à expliquer les valeurs élevées du nombre de particules ainsi que l'effet négligeable de la concentration d'initiateur sur le nombre de particules. En autre, il est démontré que le phénomène d'agrégation des particules doit être pris en considération afin d'obtenir des DTPs cohérentes. Dans la troisième et dernière partie, deux nouvelles méthodes numériques pour la résolution de bilans de population d'intérêt pour la modélisation des systèmes de polymérisation en émulsion sont proposées et analysées
Morin, Aurélie. „Controlled radical polymerization of vinyl esters and vinyl amides : experimental and theoretical studies“. Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0117/document.
Der volle Inhalt der QuelleThis thesis focus on Controlled Radical Polymerization (CRP) of vinyl esters and vinyl amides. One of the possibilities to achieve this control is a dynamic reversible trapping of the growing radical chains (P•) by a controlling agent (T) to form a dormant species (P─T’). The radical concentration in the medium can be dramatically reduced so that the unwanted terminations are disfavored and polymers with controlled molecular weights and low dispersity can be obtained. A way to achieve this control is the use of metallic complexes, which can oxidize and form a metal-carbon bond, as trapping agent in the so-called Organometallic Mediated Radical Polymerization (OMRP). So far, different transition metals have been used with gretaer or smaller success. In this study, the synthesis of copper(I) complexes and their investigation for the vinyl acetate and ethylene polymerization under OMRP conditions were performed. We also used computational chemistry as a tool to better understand why the cobalt(II) acetylacetonate (Co(acac)2) has, so far, given the best results for either vinyl acetate or vinyl amides polymerization. Thanks to Density Functional Theory (DFT), the crucial role of the monomer carbonyl group coordination to cobalt was pointed out
Altinsoy, Sule. „Polymerization And Characterization Of N-vinyl-2-pyrrolidone“. Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611238/index.pdf.
Der volle Inhalt der Quelle#56256
&
#56394
-radiation in the presence of atmospheric oxygen and under vacuum at different periods. Polymerization also conducted by using chemical initiator, &
#56256
&
#56466
-Azoisobutyronitrile, AIBN, in bulk at different temperatures and times. The activation energy for polymerization was found from Arrhenius plot as 31,8 kJ/mol. By using the Fox-Flory equation T&
#56256
&
#56394
and k values calculated for each polymerization methods. The polymer obtained was white gel type. The different types of polymer obtained were investigated by FT-IR, 1H-NMR and 13C-NMR, DSC, TGA and viscosity measurement methods. According to the FT-IR and NMR results, the polymerizations proceeded via vinyl group. As expected, solution viscosity measurements and DSC results showed that the glass transition temperature of polymer increases with increasing molecular weight.
Mishima, Eri. „Organoheteroatom-Mediated Living Vinyl Polymerization under Acidic Condition“. 京都大学 (Kyoto University), 2012. http://hdl.handle.net/2433/157613.
Der volle Inhalt der QuelleScholten, Marc Davis. „Strategies for the controlled polymerization of vinyl monomers /“. May be available electronically:, 2008. http://proquest.umi.com/login?COPT=REJTPTU1MTUmSU5UPTAmVkVSPTI=&clientId=12498.
Der volle Inhalt der QuelleCho, Chang Gi. „Controlled polymerization of alkyl vinyl ethers via 'covalent' propagating species“. Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53930.
Der volle Inhalt der QuellePh. D.
Holt, J. M. „Studies on the formation of water soluble vinyl polymers“. Thesis, University of Huddersfield, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.378968.
Der volle Inhalt der QuelleBücher zum Thema "Vinyl polymerization"
1952-, Yagci Yusuf, Hrsg. Handbook of radical vinyl polymerization. New York: Marcel Dekker, 1998.
Den vollen Inhalt der Quelle findenVinyl acetate emulsion polymerization and copolymerization with acrylic monomers. Boca Raton, Fla: CRC Press, 2000.
Den vollen Inhalt der Quelle findenK, Mishra Munmaya, Yagci Yusuf 1952- und Mishra Munmaya K, Hrsg. Handbook of vinyl polymers: Radical polymerization, process, and technology. 2. Aufl. Boca Raton, FL: Taylor & Francis, 2008.
Den vollen Inhalt der Quelle findenMinsker, K. S. Degradation and stabilization of vinyl-chloridebased polymers. Oxford: Pergamon Press, 1988.
Den vollen Inhalt der Quelle findenMinsker, K. S. Degradation and stabilization of vinyl chloride-based polymers. Oxford: Pergamon, 1988.
Den vollen Inhalt der Quelle findenT, Bhatt Ramakrishna, und United States. National Aeronautics and Space Administration., Hrsg. The effect of polymer char on nitridation kinetics of silicon. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenT, Bhatt Ramakrishna, und United States. National Aeronautics and Space Administration., Hrsg. The effect of polymer char on nitridation kinetics of silicon. [Washington, DC]: National Aeronautics and Space Administration, 1994.
Den vollen Inhalt der Quelle findenEmulsion Polymerization of Vinyl Acetate. Springer, 2012.
Den vollen Inhalt der Quelle findenEl-Aasser, Mohamed S. Emulsion Polymerization of Vinyl Acetate. Springer London, Limited, 2012.
Den vollen Inhalt der Quelle findenEl-Aasser, Mohamed S. Emulsion Polymerization of Vinyl Acetate. Springer, 2012.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Vinyl polymerization"
Mori, Hideharu, Axel H. E. Müller und Peter F. W. Simon. „Self-Condensing Vinyl Polymerization“. In Hyperbranched Polymers, 139–74. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470929001.ch5.
Der volle Inhalt der QuelleIshizone, Takashi, Yuki Kosaka und Raita Goseki. „Anionic Polymerization of Polar Vinyl Monomers: Vinylpyridines, (Meth)acrylates, (Meth)acrylamides, (Meth)acrylonitrile, Phenyl Vinyl Sulfoxide, Benzofulvene, and Other Monomers“. In Anionic Polymerization, 127–89. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-54186-8_4.
Der volle Inhalt der QuelleHollmann, Frank. „Enzymatic Polymerization of Vinyl Polymers“. In Biocatalysis in Polymer Chemistry, 143–63. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010. http://dx.doi.org/10.1002/9783527632534.ch6.
Der volle Inhalt der QuelleMathers, Robert T., Andrew J. D. Magenau, Kristin Schröder und Krzysztof Matyjaszewski. „Overview of Controlled/Living polymerization Methods of Vinyl Monomers“. In Monitoring Polymerization Reactions, 29–44. Hoboken, NJ: John Wiley & Sons, 2014. http://dx.doi.org/10.1002/9781118733813.ch2.
Der volle Inhalt der QuelleFontanille, Michel, und Yves Gnanou. „Anionic Polymerization of Vinyl and Related Monomers“. In Macromolecular Engineering, 7–55. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527631421.ch2.
Der volle Inhalt der QuelleTanaka, Ryo, und Takeshi Shiono. „Coordination Polymerization (Styrene and Polar Vinyl Monomers)“. In Encyclopedia of Polymeric Nanomaterials, 1–7. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_180-1.
Der volle Inhalt der QuelleAbreu, Carlos M. R., Ana C. Fonseca, Nuno M. P. Rocha, James T. Guthrie, Arménio C. Serra und Jorge F. J. Coelho. „Reversible Deactivation Radical Polymerization of Vinyl Chloride“. In ACS Symposium Series, 227–61. Washington, DC: American Chemical Society, 2018. http://dx.doi.org/10.1021/bk-2018-1284.ch010.
Der volle Inhalt der QuelleTang, Huadong, Maciej Radosz und Youqing Shen. „Controlled/"Living" Radical Polymerization of Vinyl Acetate“. In ACS Symposium Series, 139–57. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1023.ch010.
Der volle Inhalt der QuelleOkamoto, Yoshio, Kazunobu Yamada und Tamaki Nakano. „Stereochemistry in Radical Polymerization of Vinyl Esters“. In ACS Symposium Series, 57–67. Washington, DC: American Chemical Society, 2000. http://dx.doi.org/10.1021/bk-2000-0768.ch004.
Der volle Inhalt der QuelleTanaka, Ryo, und Takeshi Shiono. „Coordination Polymerization (Styrene and Polar Vinyl Monomers)“. In Encyclopedia of Polymeric Nanomaterials, 474–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_180.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vinyl polymerization"
Jing, Yang, Zeng Hui und Huang Jiangping. „Vinyl Acetate Polymerization Rate Prediction Based on FOA GNN“. In 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE, 2014. http://dx.doi.org/10.1109/3pgcic.2014.61.
Der volle Inhalt der QuelleJiangping Huang, Zhig und Huihui Tao. „A support vector machines for the polymerization rate of vinyl acetate“. In 2010 8th World Congress on Intelligent Control and Automation (WCICA 2010). IEEE, 2010. http://dx.doi.org/10.1109/wcica.2010.5554278.
Der volle Inhalt der QuelleBermesheva, Evgeniya, Alyona Wozniak, Gleb Karpov, Alena Zudina, Gleb Chesnokov, Pavel Gribanov, Maxim Topchiy, Andrey F. Asachenko, Mikhail Nechaev und Maxim Bermeshev. „Addition polymerization of 5-vinyl-2-norbornene and 5-ethylidene-2-norbornene“. In 9TH INTERNATIONAL CONFERENCE ON “TIMES OF POLYMERS AND COMPOSITES”: From Aerospace to Nanotechnology. Author(s), 2018. http://dx.doi.org/10.1063/1.5045946.
Der volle Inhalt der QuelleDiao, Cuimei, und Yingquan Zou. „Photoinitiated polymerization of new hybrid monomer containing vinyl ether and (methyl) acryloyl groups“. In SPIE Advanced Lithography, herausgegeben von Robert D. Allen und Mark H. Somervell. SPIE, 2011. http://dx.doi.org/10.1117/12.879382.
Der volle Inhalt der QuelleLi, Wei, und Ying Quan Zou. „Synthesize and polymerization of novel photocurable vinyl ether monomers containing perfluorinated aromatic units“. In SPIE Advanced Lithography, herausgegeben von Mark H. Somervell und Thomas I. Wallow. SPIE, 2012. http://dx.doi.org/10.1117/12.916674.
Der volle Inhalt der QuelleHuang, Jiangping, Huihui Tao und Zhigao Zhu. „Soft-Sensing Modeling Method of Vinyl Acetate Polymerization Rate Based on BP Neural Network“. In 2010 International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2010). IEEE, 2010. http://dx.doi.org/10.1109/icmtma.2010.326.
Der volle Inhalt der QuelleKovalenko, Yulia F., und Ekaterina A. Shulaeva. „Mathematical methods of modeling of polymerizer reactor for the process of polymerization of vinyl chloride“. In PROCEEDINGS OF THE II INTERNATIONAL CONFERENCE ON ADVANCES IN MATERIALS, SYSTEMS AND TECHNOLOGIES: (CAMSTech-II 2021). AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0092460.
Der volle Inhalt der QuelleHwang, Ho-Sang, Bum-Kyoung Seo und Kune-Woo Lee. „Strippable Core-Shell Polymer Emulsion for Decontamination of Radioactive Surface Contamination“. In ASME 2010 13th International Conference on Environmental Remediation and Radioactive Waste Management. ASMEDC, 2010. http://dx.doi.org/10.1115/icem2010-40193.
Der volle Inhalt der QuelleAl-Alawi, Saeed S. „Effect of temperature on the rate of polymerization of 4-vinyl pyrrolidone in the presence of poly(acrylic acid) in nonaqueous medium by Fourier transform infrared spectroscopy“. In Luebeck - DL tentative, herausgegeben von Herbert M. Heise, Ernst H. Korte und Heinz W. Siesler. SPIE, 1992. http://dx.doi.org/10.1117/12.56450.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Vinyl polymerization"
Percec, Virgil, Myongsoo Lee und C. Ackerman. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 9. Living Cationic Polymerization of 5-((4-Cyano-4'-Biphenyl) oxy)pentyl Vinyl Ethers and 7-((4-Cyano-4'-Biphenyl)oxy)heptyl Vinyl Ether, and the Mesomorphic Behavior of the Resulting Polymers. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1990. http://dx.doi.org/10.21236/ada229769.
Der volle Inhalt der QuellePercec, V., Q. Zheng und M. Lee. Molecular Engineering of Liquid Crystal Polymers by Living Polymerization. 13. Synthesis and Living Cationic Polymerization of 4-((S(-)-2- Methyl-1-Butyl)Oxycarbonyl)-4'-(omega-Oxyalkyl-1-Vinyl Ether)Biphenyl with Undecanyl and Hexyl Alkyl Groups. Fort Belvoir, VA: Defense Technical Information Center, April 1991. http://dx.doi.org/10.21236/ada235791.
Der volle Inhalt der QuellePerce, Virgil, Myongsoo Lee und Dimitris Tomazos. Molecular Engineering of Liquid Crystalline Polymers by Living Cationic Polymerization. 21. Synthesis and Characterization of Poly(3-((4-Cyano-4'- Biphenyl)oxy)propyl Vinyl Ether) Macromonomers. Fort Belvoir, VA: Defense Technical Information Center, März 1992. http://dx.doi.org/10.21236/ada248305.
Der volle Inhalt der Quelle