Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vibration period“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vibration period" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vibration period"
Ryazancev, V., M. Gerasimov und Y. Brazhnik. „REDUCTION OF DIFFERENTLY DIRECTIONAL VIBRATIONS TO ASYMMETRICAL BY CHANGING THE RATIO OF VALUES COMPOSING THE DRIVING FORCE“. Bulletin of Belgorod State Technological University named after. V. G. Shukhov 6, Nr. 5 (18.05.2021): 87–94. http://dx.doi.org/10.34031/2071-7318-2021-6-5-87-94.
Der volle Inhalt der QuelleDong, Jie, Yue Yang und Zhi-Hui Wu. „Propagation characteristics of vibrations induced by heavy-haul trains in a loess area of the North China Plains“. Journal of Vibration and Control 25, Nr. 4 (09.10.2018): 882–94. http://dx.doi.org/10.1177/1077546318802980.
Der volle Inhalt der QuelleSusastro, Susastro, und Novi Indah Riani. „Pendekatan Eksperimen Karakteristik Respon Getaran Sistem Two Degree of Freedom dengan Penambahan Independent Dual Dynamic Vibration Absorber“. R.E.M. (Rekayasa Energi Manufaktur) Jurnal 3, Nr. 2 (02.05.2019): 85. http://dx.doi.org/10.21070/r.e.m.v3i2.1729.
Der volle Inhalt der QuelleCveticanin, L. „Period of vibration of axially vibrating truly nonlinear rod“. Journal of Sound and Vibration 374 (Juli 2016): 199–210. http://dx.doi.org/10.1016/j.jsv.2016.03.027.
Der volle Inhalt der QuelleChang, Seongkyu. „Active Mass Damper for Reducing Wind and Earthquake Vibrations of a Long-Period Bridge“. Actuators 9, Nr. 3 (07.08.2020): 66. http://dx.doi.org/10.3390/act9030066.
Der volle Inhalt der QuelleKhomenko, Andrei P., Sergey K. Kargapoltsev und Andrey V. Eliseev. „Development of Approaches to Creation of Active Vibration Control System in Problems of the Dynamics for Granular Media“. MATEC Web of Conferences 148 (2018): 11004. http://dx.doi.org/10.1051/matecconf/201814811004.
Der volle Inhalt der QuelleChalah, Farid, Lila Chalah-Rezgui, Kamel Falek, Salah Eddine Djellab und Abderrahim Bali. „Fundamental Vibration Period of SW Buildings“. APCBEE Procedia 9 (2014): 354–59. http://dx.doi.org/10.1016/j.apcbee.2014.01.062.
Der volle Inhalt der QuelleBASTRUKOV, S. I., J. W. YU, R. X. XU und I. V. MOLODTSOVA. „RADIATIVE ACTIVITY OF MAGNETIC WHITE DWARF UNDERGOING LORENTZ-FORCE-DRIVEN TORSIONAL VIBRATIONS“. Modern Physics Letters A 26, Nr. 05 (20.02.2011): 359–66. http://dx.doi.org/10.1142/s0217732311034761.
Der volle Inhalt der QuelleAn, Xue Li, Dong Xiang Jiang, Ming Hao Zhao und Chao Liu. „Numerical Analysis of Coupled Lateral and Torsional Vibrations of a Vertical Unbalanced Rotor“. Applied Mechanics and Materials 20-23 (Januar 2010): 352–57. http://dx.doi.org/10.4028/www.scientific.net/amm.20-23.352.
Der volle Inhalt der QuelleYakimova, Natalya L., Vladimir A. Pankov, Aleksandr V. Lizarev, Viktor S. Rukavishnikov, Marina V. Kuleshova, Elena V. Katamanova, Evgeny A. Titov und Dina V. Rusanova. „Neurophysiological and morphological effects in the post-exposure vibration period during experimental modeling“. Russian Journal of Occupational Health and Industrial Ecology, Nr. 5 (31.05.2019): 284–90. http://dx.doi.org/10.31089/1026-9428-2019-59-5-284-290.
Der volle Inhalt der QuelleDissertationen zum Thema "Vibration period"
Dominguez, Morales Martha. „Fundamental period of vibration for reinforced concrete buildings“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0018/MQ58450.pdf.
Der volle Inhalt der QuelleYoung, Kelly Christine. „An Investigation of the Fundamental Period of Vibration of Irregular Steel Structures“. The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316473829.
Der volle Inhalt der QuelleTicona, A. M., M. A. Rosales und J. D. Orihuela. „Correction coefficients of distortion and vibration period for buildings due to soil-structure interaction“. OP Publishing Ltd, 2020. http://hdl.handle.net/10757/656571.
Der volle Inhalt der QuelleHafeez, Ghazanfarah. „Dynamic Characteristics of Light-frame Wood Buildings“. Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36223.
Der volle Inhalt der QuelleNavrátilová, Martina. „Nelineární dynamická analýza konstrukce zatížena seismickými účinky“. Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2015. http://www.nusl.cz/ntk/nusl-227701.
Der volle Inhalt der QuelleSun, Xiangkun. „Elastic wave propagation in periodic structures through numerical and analytical homogenization techniques“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC041/document.
Der volle Inhalt der QuelleIn this work, the multi-scale homogenization method, as well as various non homogenization methods, will be presented to study the dynamic behaviour of periodic structures. The multi-scale method starts with the scale-separation, which indicates a micro-scale to describe the local behaviour and a macro-scale to describe the global behaviour. According to the homogenization theory, the long-wave assumption is used, and the unit cell length should be much smaller than the characteristic length of the structure. Thus, the valid frequency range of homogenization is limited to the first propagating zone. The traditional homogenization model makes use of material properties mean values, but the practical validity range is far less than the first Bragg band gap. This deficiency motivated the development of new enriched homogenized models. Compared to traditional homogenization model, higher order homogenized wave equations are proposed to provide more accuracy homogenized models. Two multi-scale methods are introduced: the asymptotic expansion method, and the homogenization of periodic discrete media method (HPDM). These methods will be applied sequentially in longitudinal wave cases in bi-periodic rods and flexural wave cases in bi-periodic beams. Same higher order models are obtained by the two methods in both cases. Then, the proposed models are validated by investigating the dispersion relation and the frequency response function. Analytical solutions and wave finite element method (WFEM) are used as references. Parametric studies are carried out in the infinite case while two different boundary conditions are considered in the finite case. Afterwards, the HPDM and the CWFEM are employed to study the longitudinal and transverse vibrations of framed structures in 1D case and 2D case. The valid frequency range of the HPDM is re-evaluated using the wave propagation feature identified by the CWFEM. The relative error of the wavenumber by HPDM compared to CWFEM is illustrated in the function of frequency and scale ratio. Parametric studies on the thickness of the structure is carried out through the dispersion relation. The dynamics of finite structures are also investigated using the HPDM and CWFEM
石田, 幸男, Yukio ISHIDA, 剛志 井上, Tsuyoshi INOUE, 軍. 劉, Jun LIU, 昭宏 鈴木 und Akihiro SUZUKI. „重力と非線形ばね特性の作用を受ける偏平軸の振動 (内部共振の影響)“. 日本機械学会, 2001. http://hdl.handle.net/2237/9052.
Der volle Inhalt der QuelleBao, Bin. „Distributed, broadband vibration control devices using nonlinear approaches“. Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI086/document.
Der volle Inhalt der QuelleFor ameliorating vibration reduction systems in engineering applications, miscellaneous vibration control methods, including vibration damping systems, have been developed in recent years. As one of intelligent vibration damping systems, nonlinear electronic damping system using smart materials (e.g., piezoelectric materials), is more likely to achieve multimodal vibration control. With the development of meta-structures (a structure based upon metamaterial concepts), electronic vibration damping shunts, such as linear resonant damping or negative capacitance shunts, have been introduced and integrated abundantly in the electromechanical meta-structure design for wave attenuation and vibration reduction control. Herein, semi-passive Synchronized Switch Damping on the Inductor (SSDI) technique (which belongs to nonlinear electronic damping techniques), is combined with smart meta-structure (also called smart periodic structure) concept for broadband wave attenuation and vibration reduction control, especially for low frequency applications. More precisely, smart periodic structure with nonlinear SSDI electrical networks is investigated from the following four aspects, including three new techniques for limiting vibrations: First, in order to dispose of a tool allowing the evaluation of the proposed approaches, previous finite element (FE) modeling methods for piezoelectric beam structures are summarized and a new voltage-based FE modeling method, based on Timoshenko beam theory, is proposed for investigating smart beam structure with complex interconnected electrical networks; then, the first developed technique lies in smart periodic structure with nonlinear SSDI interconnected electrical networks, which involves wave propagation interaction between continuous mechanical and continuous nonlinear electrical media; the second proposed topology lies in smart periodic structures with nonlinear SSDI interleaved / Tri-interleaved electrical networks involving wave propagation interaction between the continuous mechanical medium and the discrete nonlinear electrical medium. Due to unique electrical interleaved configuration and nonlinear SSDI electrical features, electrical irregularities are induced and simultaneously mechanical irregularities are also generated within an investigated periodic cell; the last architecture consists in smart periodic structures with SSDI multilevel interleaved-interconnected electrical networks, involving wave propagation interaction between the continuous mechanical medium and the multilevel continuous nonlinear electrical medium. Compared with the SSDI interconnected case, more resonant-type band gaps in the primitive pass bands of purely mechanical periodic structures can be induced, and the number of such band-gaps are closely related to the interconnection / interleaved level. Finally, the main works and perspectives of the thesis are summarized in the last chapter
Rodrigues, Cunha Leandro. „Robust bandgaps for vibration control in periodic structures“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD060.
Der volle Inhalt der QuelleIn this thesis, a simple methodology to find robust bandgaps is presented. Four different periodic structures are used as numerical examples for infinite and finite models. The first two are related to attenuation zones created for longitudinal waves using spring-mass and stepped rod unit cells. The Transfer Matrix method is used to model the unit cell. With this method, it is possible to obtain the frequency responses, using a spectral method, and dispersion constants, solving an eigenvalue prob-lem. The most influential physical and geometrical parameters are determined by performing partial derivative and finite difference sensitivity analysis through an infinite model. Therein, for the second example, the cross-section area of half-cell is considered as a stochastic variable represented by a probability density function with specific deviation properties for a probabilistic analysis. The third example concerns the bandgaps for flexural waves using stepped beams unit cells. For this case, the classical Transfer Matrix method cannot be used to obtain finite structures response in low frequency because of the presence of ill-conditioned matrices. Therefore, a recursive method termed Translation Matrix, which avoid matrix multiplication, is used and the corresponding probabilistic analysis is per-formed using the half-cell thickness as a random variable. An experimental analysis is also performed for this case, but considering half-cell length as uncertain. The last example is a periodic truss that is considered with and without smart components. The unit cell of this lattice structure can present pas-sive and active members. As long as the type of unit cell is more complex, the finite element method is used. However, this kind of structure does not have impedance mismatches strong enough to open bandgaps although the presence of repetitive substructures. In virtue of this, eight scenarios are inves-tigated considering the introduction of concentrated mass on joints and piezoelectric actuators in reso-nant shunt circuit which are considered as stochastic for specific cases. For each structure model, a Monte Carlo Simulation with Latin Hypercube sampling is carried out, the distinctions between the corresponding uncertain attenuation zones for finite and infinite models are exposed and the relation with localized modes is clarified. These results lead to conclude that the finite models present a larger stop zone considering stochastic parameters than infinite models. In other words, the uncertainties be-tween neighbors’ cells compensate each other and the finite structures is naturally more robust. Final-ly, the effect of increasing the uncertainty level, by varying a stochastic coefficient, is analyzed and the concept of robust band gap is presented
Ben, Brahim Nadia. „Approche multiéchelle pour le comportement vibratoire des structures avec un défaut de rigidité“. Phd thesis, Université Nice Sophia Antipolis, 2014. http://tel.archives-ouvertes.fr/tel-01066795.
Der volle Inhalt der QuelleBücher zum Thema "Vibration period"
Mei, C. Component mode synthesis and large deflection vibration of complex structures: Final report for the period ended January 31, 1987. [Washington, DC: National Aeronautics and Space Administration, 1987.
Den vollen Inhalt der Quelle findenBritcher, Colin P. Large angle magnetic suspension test fixture: Final report for the period ended October 31, 1995. Norfolk, Va: Old Dominion University Research Foundation, 1995.
Den vollen Inhalt der Quelle findenBarbieri, Enrique. Momentum management in redundant manipulators for vibration suppression: Final report, NASA research grant NAG-1-1270 : report period June 1, 1992 - August 31, 1993. [Washington, D.C: National Aeronautics and Space Administration, 1993.
Den vollen Inhalt der Quelle findenBritcher, Colin P. Large angle magnetic suspension test fixture: Progress report for the period November 1, 1995 through May 1, 1996. Norfolk, Va: Dept. of Aerospace Engineering, Dept. of Mechanical Engineering, College of Engineering & Technology, Old Dominion University, 1996.
Den vollen Inhalt der Quelle findenBritcher, Colin P. Large angle magnetic suspension test fixture: Progress report for the period November 1, 1992 to May 31, 1993. Norfolk, Va: Dept. of Mechanical Engineering & Mechanics, College of Engineering & Technology, Old Dominion University, 1993.
Den vollen Inhalt der Quelle findenBritcher, Colin P. Large angle magnetic suspension test fixture: Final report for the period 11-1-95 thru 10-31-96. [Washington, D.C: National Aeronautics and Space Administration, 1997.
Den vollen Inhalt der Quelle findenMeirovitch, Leonard. A progress report on identification and control of structures in space: NASA research grant NAG-1-225, covering the period July 1 - June 31, 1985. Blacksburg, Va: Virginia Pollytechnic Institute and State University , Engineering Science and Mechanics Dept., 1985.
Den vollen Inhalt der Quelle findenMeirovitch, Leonard. A progress report on identification and control of structures in space: NASA research grant NAG-1-225, covering the period January 1 - June 30, 1985. [Washington, D.C.?: National Aeronautics and Space Administration?], 1985.
Den vollen Inhalt der Quelle findenPierre, Christophe. Localized free and forced vibrations of nearly periodic disordered structures. New York: American Institute of Aeronautics and Astronautics, 1987.
Den vollen Inhalt der Quelle findenHeinbockel, J. H. Nozzle flow with vibrational nonequilibrium: Final report for the period ended August 31, 1995. Norfolk, Va: Old Dominion University Research Foundation, Dept. of Mathematics & Statistics, College of Sciences, 1995.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Vibration period"
Charney, Finley A. „Period of Vibration“. In Seismic Loads, 115–22. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784413524.ch17.
Der volle Inhalt der QuelleSoni, Prabhat K., Prakash Sangamnerkar und S. K. Dubey. „Fundamental Time Period of Vibration in Seismic Analysis“. In Lecture Notes in Civil Engineering, 679–89. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0890-5_56.
Der volle Inhalt der QuelleManyin, Hu, Liu Yujing, Yin Qi, Liu Zhong und Gao Xianglin. „Research on Vibration Period Optimization of Electrostatic Precipitator“. In Electrostatic Precipitation, 94–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89251-9_19.
Der volle Inhalt der QuelleRoy, Anuja, Atanu Sahu und Debasish Bandyopadhyay. „A Novel Sloshing Damper for Vibration Control of Short Period Structures“. In Lecture Notes in Civil Engineering, 323–30. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8138-0_26.
Der volle Inhalt der QuellePandey, Dhirendra Kumar, und Sudib Kumar Mishra. „Modified Tuned Liquid Damper for Vibration Control of Short Period Structures“. In Lecture Notes in Civil Engineering, 257–68. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9976-7_24.
Der volle Inhalt der QuelleKawamura, Shozo, Tetsuhiko Owa, Tomohiko Ise und Masami Matsubara. „Proposition of Isolation Table Considering the Long-Period Earthquake Ground Motion (Method of Changing Natural Frequency of Isolation System with Additional Spring)“. In Vibration Engineering for a Sustainable Future, 245–53. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-48153-7_32.
Der volle Inhalt der QuelleSoni, Prabhat Kumar, S. K. Dubey und Prakash Sangamnerkar. „Effect of Slab Thickness on Period of the Vibration of Reinforced Concrete Building“. In Lecture Notes in Civil Engineering, 353–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5235-9_26.
Der volle Inhalt der QuelleZou, Hongbo, Dakai Liang, Jie Zeng, Kun Li und Yifei Zhou. „A Fiber Bragg Grating Vibration Interrogation System Based on a Cascaded Long-Period Fiber Grating“. In Communications in Computer and Information Science, 211–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-23226-8_28.
Der volle Inhalt der QuelleDel Pedro, M., und P. Pahud. „Periodic Steady State“. In Vibration Mechanics, 80–97. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3514-6_5.
Der volle Inhalt der QuelleJara, Jose M., Bertha A. Olmos und Guillermo Martínez. „Strengthening and Retrofitting of Motín de Oro II Bridge in Mexico“. In Case Studies on Conservation and Seismic Strengthening/Retrofitting of Existing Structures, 193–209. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2020. http://dx.doi.org/10.2749/cs002.193.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vibration period"
Takeuchi, Makoto, Satoshi Tanaka, Shingo Tekuramori, Atsushi Wada und Nobuaki Takahashi. „Mechanical vibration sensing using cascaded long period fiber grating“. In 2013 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR). IEEE, 2013. http://dx.doi.org/10.1109/cleopr.2013.6600331.
Der volle Inhalt der QuelleSomatomo, Hiroyuki, Satoshi Tanaka und Nobuaki Takahashi. „Vibration sensing of solid using long-period fiber grating“. In 19th International Conference on Optical Fibre Sensors, herausgegeben von David D. Sampson. SPIE, 2008. http://dx.doi.org/10.1117/12.785961.
Der volle Inhalt der QuellePi, Jun, und Xiangji Bu. „Analysis of Full-Period and Non-full-Period Sampling of Vibration Signal for Engine Rotors“. In 2015 International Conference on Industrial Technology and Management Science. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/itms-15.2015.121.
Der volle Inhalt der QuelleBlack, Jared L. „Using Vibration Measurements to Assess Structural Integrity“. In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-79144.
Der volle Inhalt der QuelleLu, ShuQing. „The ANSYS Analysis of Predominant Period Varication under the Site Vibration“. In 2009 Second International Conference on Information and Computing Science. IEEE, 2009. http://dx.doi.org/10.1109/icic.2009.344.
Der volle Inhalt der QuelleNeyman, Lyudmila A., Vladimir Yu Neyman und Andrei S. Shabanov. „Vibration dynamics of an electromagnetic drive with a half-period rectifier“. In 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM). IEEE, 2017. http://dx.doi.org/10.1109/edm.2017.7981805.
Der volle Inhalt der QuelleYu, Bo, und Albert C. J. Luo. „Periodic Motion in a Nonlinear Vibration Isolator Under Harmonic Excitation“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71032.
Der volle Inhalt der QuelleZhang, Zijun, Chunjian Hua und Chaofan Wang. „Study on Fatigue Fracture Period of Metal Pipes under Compound Vibration Loading“. In 2020 39th Chinese Control Conference (CCC). IEEE, 2020. http://dx.doi.org/10.23919/ccc50068.2020.9188490.
Der volle Inhalt der Quelle„Evaluation of Measurement Accuracy of the MEMS Accelerometer for Long Period and Large Amplitude Vibration“. In Structural Health Monitoring. Materials Research Forum LLC, 2021. http://dx.doi.org/10.21741/9781644901311-27.
Der volle Inhalt der QuelleShind, Yui, Yasuhiro Tsutsum, Takahiro Has, Masaharu Ohash, Yuji Miyosh und Hirokazu Kubot. „Vibration Monitoring Based on the Polarization Dependent Loss of Long Period Fiber Gratings“. In 2018 23rd Opto-Electronics and Communications Conference (OECC). IEEE, 2018. http://dx.doi.org/10.1109/oecc.2018.8730141.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Vibration period"
Wang, Kon-Well. Piezoelectric Tailoring with Enhanced Electromechanical Coupling for Concurrent Vibration Control of Mistuned Periodic Structures. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada471779.
Der volle Inhalt der QuelleXi, X. Vibrational and Electronic Properties of Fullerene and Carbon-Based Clustors. Final Reports for period July 1, 1997 - June 30, 2001. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/833761.
Der volle Inhalt der QuelleQuinn, Meghan. Geotechnical effects on fiber optic distributed acoustic sensing performance. Engineer Research and Development Center (U.S.), Juli 2021. http://dx.doi.org/10.21079/11681/41325.
Der volle Inhalt der Quelle