Zeitschriftenartikel zum Thema „Vibration bandgap“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Vibration bandgap" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Anigbogu, Winner, und Hamzeh Bardaweel. „A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting“. Shock and Vibration 2020 (13.06.2020): 1–12. http://dx.doi.org/10.1155/2020/4063025.
Der volle Inhalt der QuelleDong, Xingjian, Shuo Wang, Anshuai Wang, Liang Wang, Zhaozhan Zhang, Yuanhao Tie, Qingyu Lin und Yongtao Sun. „Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial“. Applied Mathematics and Mechanics 45, Nr. 10 (30.09.2024): 1841–56. http://dx.doi.org/10.1007/s10483-024-3168-7.
Der volle Inhalt der QuelleYang, Fan, Zhaoyang Ma und Xingming Guo. „Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression“. Applied Mathematics and Mechanics 46, Nr. 1 (Januar 2025): 1–24. https://doi.org/10.1007/s10483-025-3204-7.
Der volle Inhalt der QuelleHajhosseini, Mohammad. „Analysis of complete vibration bandgaps in a new periodic lattice model using the differential quadrature method“. Journal of Vibration and Control 26, Nr. 19-20 (24.01.2020): 1708–20. http://dx.doi.org/10.1177/1077546320902549.
Der volle Inhalt der QuelleGuo, Peng, und Qizheng Zhou. „An Analytical, Numerical, and Experimental Investigation on Transverse Vibrations of a Finite Locally Resonant Beam“. Shock and Vibration 2022 (13.06.2022): 1–17. http://dx.doi.org/10.1155/2022/6875718.
Der volle Inhalt der QuelleMuhammad, Shoaib, Shuai Wang, Fengming Li und Chuanzeng Zhang. „Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms“. Journal of Vibration and Control 26, Nr. 15-16 (14.01.2020): 1309–18. http://dx.doi.org/10.1177/1077546319895630.
Der volle Inhalt der QuelleWei, Wei, Feng Guan und Xin Fang. „A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures“. Applied Mathematics and Mechanics 45, Nr. 7 (Juli 2024): 1171–88. http://dx.doi.org/10.1007/s10483-024-3160-6.
Der volle Inhalt der QuelleGuo, Zhiwei, Buliang Xie, Meiping Sheng und Hao Zeng. „Tunable Ultralow-Frequency Bandgaps Based on Locally Resonant Plate with Quasi-Zero-Stiffness Resonators“. Applied Sciences 14, Nr. 4 (11.02.2024): 1467. http://dx.doi.org/10.3390/app14041467.
Der volle Inhalt der QuelleYong, Jiawang, Wanting Li, Xiaojun Hu, Zhishuai Wan, Yiyao Dong und Nenglian Feng. „Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial“. Applied Sciences 14, Nr. 3 (25.01.2024): 1028. http://dx.doi.org/10.3390/app14031028.
Der volle Inhalt der QuelleHan, Wenwen, und Shui Wan. „Flexural Wave Bandgaps in a Prestressed Multisupported Timoshenko Beam with Periodic Inerter-Based Dynamic Vibration Absorbers“. Sustainability 15, Nr. 4 (16.02.2023): 3680. http://dx.doi.org/10.3390/su15043680.
Der volle Inhalt der QuelleXining, Zhao, Zhang Yongwang, Li Bo, Shen Chuangshi, Li Zewei und Zhou Bo. „Active tuning of the vibration and wave propagation properties in electromechanical metamaterial beam“. Journal of Applied Physics 132, Nr. 23 (21.12.2022): 234501. http://dx.doi.org/10.1063/5.0122301.
Der volle Inhalt der QuelleLei, Xiaofei, Peng Chen, Heping Hou, Shanhui Liu und Peng Liu. „Longitudinal vibration wave in the composite elastic metamaterials containing Bragg structure and local resonator“. International Journal of Modern Physics B 34, Nr. 26 (15.09.2020): 2050232. http://dx.doi.org/10.1142/s021797922050232x.
Der volle Inhalt der QuelleQiang, Chenxu, Yuxin Hao, Wei Zhang, Jinqiang Li, Shaowu Yang und Yuteng Cao. „Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam“. Applied Mathematics and Mechanics 42, Nr. 11 (22.10.2021): 1555–70. http://dx.doi.org/10.1007/s10483-021-2790-7.
Der volle Inhalt der QuelleZhang, Shengke, Denghui Qian, Zhiwen Zhang und Haoran Ge. „Low-Frequency Bandgap Characterization of a Locally Resonant Pentagonal Phononic Crystal Beam Structure“. Materials 17, Nr. 7 (08.04.2024): 1702. http://dx.doi.org/10.3390/ma17071702.
Der volle Inhalt der QuelleSUN, Xuyang, Zhong WANG, Jingjun ZHOU, Qian WANG und Jingjian XU. „Study on vibration bandgap characteristics of a cantilever beam type local resonance unit“. Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University 42, Nr. 4 (August 2024): 643–51. http://dx.doi.org/10.1051/jnwpu/20244240643.
Der volle Inhalt der QuelleYang, Fan, Zhaoyang Ma und Xingming Guo. „Bandgap characteristics of the two-dimensional missing rib lattice structure“. Applied Mathematics and Mechanics 43, Nr. 11 (November 2022): 1631–40. http://dx.doi.org/10.1007/s10483-022-2923-6.
Der volle Inhalt der QuelleZhang, Zhen, Qin Wang, Yu Su, Junwei Tian, Xingang Wang und Shoumin Wang. „The influence of component defect states on bandgaps of 2D composite beam frame structures“. AIP Advances 13, Nr. 4 (01.04.2023): 045220. http://dx.doi.org/10.1063/5.0120259.
Der volle Inhalt der QuelleLiu, Jianing, Jinqiang Li und Ying Wu. „Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method“. Applied Mathematics and Mechanics 45, Nr. 10 (30.09.2024): 1807–20. http://dx.doi.org/10.1007/s10483-024-3167-8.
Der volle Inhalt der QuelleKao, De-Wei, Jung-San Chen und Yu-Bin Chen. „Bandgap prediction for a beam containing membrane-arch-mass resonators“. Journal of Applied Physics 132, Nr. 24 (28.12.2022): 244902. http://dx.doi.org/10.1063/5.0118530.
Der volle Inhalt der QuelleAnnessi, A., V. Zega, P. Chiariotti, M. Martarelli und P. Castellini. „An innovative wide and low-frequency bandgap metastructure for vibration isolation“. Journal of Applied Physics 132, Nr. 8 (28.08.2022): 084903. http://dx.doi.org/10.1063/5.0102410.
Der volle Inhalt der QuelleTan, Xinyu, Bolong Jiang, Chunyu Qi, Meng Ma, Jizhao Liu, Wenlin Hu und Shaolin Wang. „Method for Controlling Full-Frequency Band Environment Vibration by Coordinating Metro Vibration Sources and Propagation Paths“. Applied Sciences 13, Nr. 24 (05.12.2023): 12979. http://dx.doi.org/10.3390/app132412979.
Der volle Inhalt der QuelleGao, Weirui, Qian Zhang, Jie Sun und Kai Guo. „A novel 3D-printed magnesium alloy phononic crystal with broadband bandgap“. Journal of Applied Physics 133, Nr. 8 (28.02.2023): 085103. http://dx.doi.org/10.1063/5.0135770.
Der volle Inhalt der QuelleLi, Chengfei, Zhaobo Chen und Yinghou Jiao. „Vibration and Bandgap Behavior of Sandwich Pyramid Lattice Core Plate with Resonant Rings“. Materials 16, Nr. 7 (29.03.2023): 2730. http://dx.doi.org/10.3390/ma16072730.
Der volle Inhalt der QuelleGuo, Peng, Qi-zheng Zhou und Zi-yin Luo. „Theoretical and experimental investigation on the low-frequency vibro-acoustic characteristics of a finite locally resonant plate“. AIP Advances 12, Nr. 11 (01.11.2022): 115201. http://dx.doi.org/10.1063/5.0121331.
Der volle Inhalt der QuelleLi, Wenzhen, Quan Zhou, Zanxu Chen, Xi Ye und Hongfu Wang. „Theoretical modeling and vibration characteristics analysis of acoustic black hole beam“. Journal of Physics: Conference Series 2825, Nr. 1 (01.08.2024): 012032. http://dx.doi.org/10.1088/1742-6596/2825/1/012032.
Der volle Inhalt der QuelleLiu, Jiayang, und Shu Li. „A Novel 3D-Printed Negative-Stiffness Lattice Structure with Internal Resonance Characteristics and Tunable Bandgap Properties“. Materials 16, Nr. 24 (15.12.2023): 7669. http://dx.doi.org/10.3390/ma16247669.
Der volle Inhalt der QuelleLi, Shuqin, Jing Song und Jingshun Ren. „Design of a Functionally Graded Material Phonon Crystal Plate and Its Application in a Bridge“. Applied Sciences 13, Nr. 13 (29.06.2023): 7677. http://dx.doi.org/10.3390/app13137677.
Der volle Inhalt der QuelleAnigbogu, Winner, und Hamzeh Bardaweel. „A Comparative Study and Analysis of Layered-Beam and Single-Beam Metamaterial Structures: Transmissibility Bandgap Development“. Applied Sciences 12, Nr. 15 (28.07.2022): 7550. http://dx.doi.org/10.3390/app12157550.
Der volle Inhalt der QuelleWu, Kun, Haiyan Hu und Lifeng Wang. „Optimization of a type of elastic metamaterial for broadband wave suppression“. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 477, Nr. 2251 (Juli 2021): 20210337. http://dx.doi.org/10.1098/rspa.2021.0337.
Der volle Inhalt der QuelleGuo, Zhiwei, und Meiping Sheng. „Bandgap of flexural wave in periodic bi-layer beam“. Journal of Vibration and Control 24, Nr. 14 (05.04.2016): 2970–85. http://dx.doi.org/10.1177/1077546316640975.
Der volle Inhalt der QuelleZhao, Caiyou, Liuchong Wang, Dongya Liu, Xing Gao, Xi Sheng und Wang Ping. „Vibration control mechanism of the metabarrier under train load via numerical simulation“. Journal of Vibration and Control 25, Nr. 19-20 (29.07.2019): 2553–66. http://dx.doi.org/10.1177/1077546319866036.
Der volle Inhalt der QuelleAlimohammadi, Hossein, Kristina Vassiljeva, S. Hassan HosseinNia und Eduard Petlenkov. „Bandgap Dynamics in Locally Resonant Metastructures: A General Theory of Internal Resonator Coupling“. Applied Sciences 14, Nr. 6 (14.03.2024): 2447. http://dx.doi.org/10.3390/app14062447.
Der volle Inhalt der QuelleAkl, Wael, Hajid Alsupie, Sadok Sassi und Amr M. Baz. „Vibration of Periodic Drill-Strings with Local Sources of Resonance“. Vibration 4, Nr. 3 (17.07.2021): 586–601. http://dx.doi.org/10.3390/vibration4030034.
Der volle Inhalt der QuelleHe, Qiang, Jingkai Nie, Yu Han, Yi Tian, Chao Fan und Guangxu Dong. „Investigation on Low Frequency Bandgap of Coupled Double Beam with Quasi-Zero Stiffness for Power Transformer Vibration Control“. Shock and Vibration 2022 (31.12.2022): 1–14. http://dx.doi.org/10.1155/2022/5029189.
Der volle Inhalt der QuelleI, Boris, und Jaesun Lee. „Numerical and Experimental Study of Low-Frequency Membrane Damper for Tube Vibration Suppression“. Actuators 13, Nr. 3 (08.03.2024): 106. http://dx.doi.org/10.3390/act13030106.
Der volle Inhalt der QuelleShu, Hai-Sheng, Xing-Guo Wang, Ru Liu, Xiao-Gang Li, Xiao-Na Shi, Shan-Jun Liang, Li-Huan Xu und Fu-Zhen Dong. „Bandgap analysis of cylindrical shells of generalized phononic crystals by transfer matrix method“. International Journal of Modern Physics B 29, Nr. 24 (30.09.2015): 1550176. http://dx.doi.org/10.1142/s0217979215501763.
Der volle Inhalt der QuelleYong, Jiawang, Yiyao Dong, Zhishuai Wan, Wanting Li und Yanyan Chen. „Collaborative Design of Static and Vibration Properties of a Novel Re-Entrant Honeycomb Metamaterial“. Applied Sciences 14, Nr. 4 (12.02.2024): 1497. http://dx.doi.org/10.3390/app14041497.
Der volle Inhalt der QuelleHan, Donghai, Qi Jia, Yuanyu Gao, Qiduo Jin, Xin Fang, Jihong Wen und Dianlong Yu. „Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes“. Applied Mathematics and Mechanics 45, Nr. 10 (30.09.2024): 1821–40. http://dx.doi.org/10.1007/s10483-024-3166-8.
Der volle Inhalt der QuelleGao, Xu, Jiyuan Wei, Jiajing Huo, Zhishuai Wan und Ying Li. „The Vibration Isolation Design of a Re-Entrant Negative Poisson’s Ratio Metamaterial“. Applied Sciences 13, Nr. 16 (21.08.2023): 9442. http://dx.doi.org/10.3390/app13169442.
Der volle Inhalt der QuelleJiang, Hui, Chunfeng Zhao, Yingjie Chen und Jian Liu. „Novel Multi-Vibration Resonator with Wide Low-Frequency Bandgap for Rayleigh Waves Attenuation“. Buildings 14, Nr. 9 (23.08.2024): 2591. http://dx.doi.org/10.3390/buildings14092591.
Der volle Inhalt der QuelleYu, Junmin, Jaesoon Jung und Semyung Wang. „Derivation and Validation of Bandgap Equation Using Serpentine Resonator“. Applied Sciences 12, Nr. 8 (13.04.2022): 3934. http://dx.doi.org/10.3390/app12083934.
Der volle Inhalt der QuelleLi, Yuanyuan, Jiancheng Liu, Zhaoyu Deng, Menyang Gong, Kunqi Huang, Yun Lai und Xiaozhou Liu. „Acoustic three-terminal controller with amplitude control for nonlinear seismic metamaterials“. AIP Advances 12, Nr. 7 (01.07.2022): 075312. http://dx.doi.org/10.1063/5.0099843.
Der volle Inhalt der QuelleGao, Ming, Zhiqiang Wu und Zhijie Wen. „Effective Negative Mass Nonlinear Acoustic Metamaterial with Pure Cubic Oscillator“. Advances in Civil Engineering 2018 (30.09.2018): 1–15. http://dx.doi.org/10.1155/2018/3081783.
Der volle Inhalt der QuelleWei, Wenming, Dimitrios Chronopoulos und Han Meng. „Broadband Vibration Attenuation Achieved by 2D Elasto-Acoustic Metamaterial Plates with Rainbow Stepped Resonators“. Materials 14, Nr. 17 (24.08.2021): 4759. http://dx.doi.org/10.3390/ma14174759.
Der volle Inhalt der QuelleGuo, Jin, Rui Zhao und Yunbo Shi. „Towards Broadband High-Frequency Vibration Attenuation Using Notched Cross-Shaped Metamaterial“. Micromachines 14, Nr. 2 (09.02.2023): 414. http://dx.doi.org/10.3390/mi14020414.
Der volle Inhalt der QuelleLi, Yinggang, Qingwen Zhou, Ling Zhu und Kailing Guo. „Hybrid radial plate-type elastic metamaterials for lowering and widening acoustic bandgaps“. International Journal of Modern Physics B 32, Nr. 26 (18.10.2018): 1850286. http://dx.doi.org/10.1142/s0217979218502867.
Der volle Inhalt der QuelleQin, Qi, und Mei-Ping Sheng. „Analyses of multi-bandgap property of a locally resonant plate composed of periodic resonant subsystems“. International Journal of Modern Physics B 32, Nr. 24 (13.09.2018): 1850269. http://dx.doi.org/10.1142/s0217979218502697.
Der volle Inhalt der QuelleLiu, Guoqing, und Denghui Qian. „Investigation of Bandgap Properties of a Piezoelectric Phononic Crystal Plate Based on the PDE Module in COMSOL“. Materials 17, Nr. 10 (14.05.2024): 2329. http://dx.doi.org/10.3390/ma17102329.
Der volle Inhalt der QuelleXu, Lanhe, Xuche Cao, Xinbo Cui und Bing Li. „Vibration Attenuation Performance of Meta-lattice Sandwich Structures with Truss-cores“. Journal of Physics: Conference Series 2252, Nr. 1 (01.04.2022): 012030. http://dx.doi.org/10.1088/1742-6596/2252/1/012030.
Der volle Inhalt der QuelleXu, Lanhe, Xuche Cao, Xinbo Cui und Bing Li. „Vibration Attenuation Performance of Meta-lattice Sandwich Structures with Truss-cores“. Journal of Physics: Conference Series 2252, Nr. 1 (01.04.2022): 012030. http://dx.doi.org/10.1088/1742-6596/2252/1/012030.
Der volle Inhalt der Quelle