Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vibration bandgap“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vibration bandgap" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vibration bandgap"
Anigbogu, Winner, und Hamzeh Bardaweel. „A Metamaterial-Inspired Structure for Simultaneous Vibration Attenuation and Energy Harvesting“. Shock and Vibration 2020 (13.06.2020): 1–12. http://dx.doi.org/10.1155/2020/4063025.
Der volle Inhalt der QuelleDong, Xingjian, Shuo Wang, Anshuai Wang, Liang Wang, Zhaozhan Zhang, Yuanhao Tie, Qingyu Lin und Yongtao Sun. „Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial“. Applied Mathematics and Mechanics 45, Nr. 10 (30.09.2024): 1841–56. http://dx.doi.org/10.1007/s10483-024-3168-7.
Der volle Inhalt der QuelleYang, Fan, Zhaoyang Ma und Xingming Guo. „Bandgap characteristics analysis and graded design of a novel metamaterial for flexural wave suppression“. Applied Mathematics and Mechanics 46, Nr. 1 (Januar 2025): 1–24. https://doi.org/10.1007/s10483-025-3204-7.
Der volle Inhalt der QuelleHajhosseini, Mohammad. „Analysis of complete vibration bandgaps in a new periodic lattice model using the differential quadrature method“. Journal of Vibration and Control 26, Nr. 19-20 (24.01.2020): 1708–20. http://dx.doi.org/10.1177/1077546320902549.
Der volle Inhalt der QuelleGuo, Peng, und Qizheng Zhou. „An Analytical, Numerical, and Experimental Investigation on Transverse Vibrations of a Finite Locally Resonant Beam“. Shock and Vibration 2022 (13.06.2022): 1–17. http://dx.doi.org/10.1155/2022/6875718.
Der volle Inhalt der QuelleMuhammad, Shoaib, Shuai Wang, Fengming Li und Chuanzeng Zhang. „Bandgap enhancement of periodic nonuniform metamaterial beams with inertial amplification mechanisms“. Journal of Vibration and Control 26, Nr. 15-16 (14.01.2020): 1309–18. http://dx.doi.org/10.1177/1077546319895630.
Der volle Inhalt der QuelleWei, Wei, Feng Guan und Xin Fang. „A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures“. Applied Mathematics and Mechanics 45, Nr. 7 (Juli 2024): 1171–88. http://dx.doi.org/10.1007/s10483-024-3160-6.
Der volle Inhalt der QuelleGuo, Zhiwei, Buliang Xie, Meiping Sheng und Hao Zeng. „Tunable Ultralow-Frequency Bandgaps Based on Locally Resonant Plate with Quasi-Zero-Stiffness Resonators“. Applied Sciences 14, Nr. 4 (11.02.2024): 1467. http://dx.doi.org/10.3390/app14041467.
Der volle Inhalt der QuelleYong, Jiawang, Wanting Li, Xiaojun Hu, Zhishuai Wan, Yiyao Dong und Nenglian Feng. „Co-Design of Mechanical and Vibration Properties of a Star Polygon-Coupled Honeycomb Metamaterial“. Applied Sciences 14, Nr. 3 (25.01.2024): 1028. http://dx.doi.org/10.3390/app14031028.
Der volle Inhalt der QuelleHan, Wenwen, und Shui Wan. „Flexural Wave Bandgaps in a Prestressed Multisupported Timoshenko Beam with Periodic Inerter-Based Dynamic Vibration Absorbers“. Sustainability 15, Nr. 4 (16.02.2023): 3680. http://dx.doi.org/10.3390/su15043680.
Der volle Inhalt der QuelleDissertationen zum Thema "Vibration bandgap"
Zhang, Runze. „Modeling of coupled vibration systems with fluid-structure interaction“. Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST136.
Der volle Inhalt der QuelleThis thesis addresses two key aspects of the vibrational dynamics of structures with fluid-structure interaction (FSI): the control of vibrations in structures immersed in a fluid and the conversion of fluid-induced vibrations into electrical energy. This dissertation presents our contributions to these two domains. To this end, the study first proposes an unit cell-based finite element model to predict vibration bandgaps in periodic composite plates under FSI conditions. By introducing a novel fluid-added mass matrix integrating Bloch boundary conditions, the fluid's inertial effects are incorporated into the bandgap analysis, enabling designing for vibration control in periodic plates submerged in liquids, achieving passive control.Based on this foundation, the research further explores the potential for actively tuning the vibration bandgaps of periodic composite plates submerged in liquids, which integrate connected piezoelectric sensors and actuators with feedback control. Therefore, an unit cell-based vibration bandgap tuning model with inertial fluid is developed, which integrates Bloch boundary conditions for both fluid and piezoelectric coupled solid domains. Then, the study reveals that in liquid environments, the fluid-added mass effect significantly impacts the bandgap characteristics of thin-walled structures, reducing the effectiveness of control strategy. Increasing the structure's self inertia or optimizing the arrangement of piezoelectric patches can mitigate this effect.On the other hand, the rivers and oceans are in constant motion, containing substantial kinetic energy. When fluid flows over a structural surface, the induced structural vibrations can be viewed as a potential source of clean and renewable energy. By utilizing the direct piezoelectric effect of piezoelectric materials, the kinetic energy of the fluid can be converted into usable electrical energy, enabling fluid energy harvesting. However, in such energy harvesting systems, significant FSI and electro-mechanical coupling effects are often accompanied by complex nonlinear dynamic behavior. The presence of these coupling effects complicates numerical simulations in this field, making it challenging, especially when considering practical applications where a deep understanding of these nonlinear behaviors and their impact on system performance is essential. Therefore, this thesis develops a full-scale finite element model to capture the strong local FSI behavior of complex thin-walled piezoelectric fluid energy harvesters (PFEH) involving microstructured transducers and non-uniform cantilevers, which are often ignored by simplified models. The research analyzes different energy harvester designs through numerical simulations, examining the influence of substrate cross-sectional shape, piezoelectric patch arrangement, and microstructure on the system's dynamic response and energy output efficiency.Finally, the study further enhance the power output of PFEHs using synergistic vortex generators composed of upstream double plates and downstream cylinder with a small spacing in dynamic water environments. With the synergistic effects of multi vortex generators, it is possible to achieve higher frequency and stable larger amplitude vibrations for the piezoelectric flag, thereby obtaining higher energy harvesting efficiency. Overall, the multi-physics coupling modeling for different FSI conditions proposed in this study not only effectively predict and control structural vibrations in fluid environments but also provide a theoretical foundation and technical support for the development of efficient piezoelectric energy harvesting systems
Rodrigues, Cunha Leandro. „Robust bandgaps for vibration control in periodic structures“. Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD060.
Der volle Inhalt der QuelleIn this thesis, a simple methodology to find robust bandgaps is presented. Four different periodic structures are used as numerical examples for infinite and finite models. The first two are related to attenuation zones created for longitudinal waves using spring-mass and stepped rod unit cells. The Transfer Matrix method is used to model the unit cell. With this method, it is possible to obtain the frequency responses, using a spectral method, and dispersion constants, solving an eigenvalue prob-lem. The most influential physical and geometrical parameters are determined by performing partial derivative and finite difference sensitivity analysis through an infinite model. Therein, for the second example, the cross-section area of half-cell is considered as a stochastic variable represented by a probability density function with specific deviation properties for a probabilistic analysis. The third example concerns the bandgaps for flexural waves using stepped beams unit cells. For this case, the classical Transfer Matrix method cannot be used to obtain finite structures response in low frequency because of the presence of ill-conditioned matrices. Therefore, a recursive method termed Translation Matrix, which avoid matrix multiplication, is used and the corresponding probabilistic analysis is per-formed using the half-cell thickness as a random variable. An experimental analysis is also performed for this case, but considering half-cell length as uncertain. The last example is a periodic truss that is considered with and without smart components. The unit cell of this lattice structure can present pas-sive and active members. As long as the type of unit cell is more complex, the finite element method is used. However, this kind of structure does not have impedance mismatches strong enough to open bandgaps although the presence of repetitive substructures. In virtue of this, eight scenarios are inves-tigated considering the introduction of concentrated mass on joints and piezoelectric actuators in reso-nant shunt circuit which are considered as stochastic for specific cases. For each structure model, a Monte Carlo Simulation with Latin Hypercube sampling is carried out, the distinctions between the corresponding uncertain attenuation zones for finite and infinite models are exposed and the relation with localized modes is clarified. These results lead to conclude that the finite models present a larger stop zone considering stochastic parameters than infinite models. In other words, the uncertainties be-tween neighbors’ cells compensate each other and the finite structures is naturally more robust. Final-ly, the effect of increasing the uncertainty level, by varying a stochastic coefficient, is analyzed and the concept of robust band gap is presented
Zheng, Xuqian. „Ultra-Wide Bandgap Crystals for Resonant Nanoelectromechanical Systems (NEMS)“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=case1554765522327938.
Der volle Inhalt der QuellePyskir, Adrien. „Application de métamatériaux aux problématiques vibroacoustiques automobiles“. Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEC011.
Der volle Inhalt der QuelleMetamaterials are architectured materials exhibiting exotic properties due to their internal stucture rather than their constitutive material. They have now been studied for two decades, but have yet to make their mark outside laboratories, especially for industrial applications. This thesis focuses on elastic metamaterials that can contribute to fix vibration issues in the automotive field. Better isolation of the main vibration sources would increase both the vibroacoustic comfort in the vehicles and the safety of mechanical parts. Through computations and experimentations, it is shown that metamaterials can be designed to meet different criteria usually contradictory and as such, are strong candidates for innovative breakthroughs in industry. As this kind of solutions differs radically from existing ones, the first chapter is a state-of-the-art review, both to grasp the main mechanims behind the multitude of metamaterials designs that can be found in the literature, as well as the methods used to modelize them. The second chapter tackles the characterization of the materials used along this thesis. The mechanical tests and results presented allow to determine the material models then inserted in the computations. Through preliminary computations, the third chapter attempts to understand and select the most promising mechanisms to satisfy the expected specifications. The chosen design properties are further investigated in the fourth chapter, through static and dynamic computations, as well as parametric studies. A hybrid metamaterial with enhanced isolation properties is proposed. To finally assess the numerical results obtained and reach better undestanding of the underlying mechanisms, the fifth chapter deals with the performed experimental tests, their analysis, and their comparison with previous results
Moreira, Fernando Jose de Oliveira. „Um controlador H 'infinito' alfa de Banda limitada para o controle ativo de vibração estrutural“. [s.n.], 1998. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263222.
Der volle Inhalt der QuelleTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-24T09:38:32Z (GMT). No. of bitstreams: 1 Moreira_FernandoJosedeOliveira_D.pdf: 15667292 bytes, checksum: b9be95fa70780c1440ed7671ea43a6dd (MD5) Previous issue date: 1998
Resumo: Neste trabalho é apresentada uma metodologia para controle ativo de vibração. O objetivo é amortecer modos de vibração de uma estrutura na região de média freqüência. A técnica empregada envolve controle por realimentação e se aplica tanto a problemas de controle de estruturas flexíveis como controle ativo de vibração e ruído. O enfoque proposto é o de controle robusto utilizando a teoria 'H IND. INFINITO¿. Desta forma, inserem-se no projeto características de robustez à dinâmica não modelada devido ao truncamento do modelo do sistema estrutural. Também estão presentes no projeto critérios de robustez à variação nos parâmetros da dinâmica do sistema. O resultado é um controlador de baixa ordem de fácil implementação que produz um eficiente amortecimento nos modos a serem controlados, sem alterar a dinâmica dos demais modos da estrutura. Dois exemplos experimentais são apresentados, comprovando a exeqüibilidade do projeto
Abstract: This work presents a new approach for the active control of structural vibration. The main goal is to damp some of the structural modes in the mid-frequency range. The feedback control strategy used in this work can be applied either to the control of flexible structures or to the control of vibration and noise. It consists of an 'H IND. INFINITE¿ controller which is robust to unmodeled residual uncertainty due to model truncation of the structural system. AIso, a parametric robustness requirement, due to parameter variations of the system dynamics, is included in the designo Only the damping of the modes to be controlled is modified, while the other ones are kept unchanged. Two experimental examples are shown to demonstrate that the practical implementation of the proposed controller is feasible
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Doutor em Engenharia Mecânica
Gehring, Junior Waldemar [UNESP]. „Monitoramento da deflexão de serras de fita contínua como proposta de avaliação da qualidade de peças serradas de madeira“. Universidade Estadual Paulista (UNESP), 2016. http://hdl.handle.net/11449/144189.
Der volle Inhalt der QuelleApproved for entry into archive by Felipe Augusto Arakaki (arakaki@reitoria.unesp.br) on 2016-09-27T16:10:42Z (GMT) No. of bitstreams: 1 gehringjunior_w_dr_guara.pdf: 23074924 bytes, checksum: aa08a0280e83325282cc29f40b158fee (MD5)
Made available in DSpace on 2016-09-27T16:10:42Z (GMT). No. of bitstreams: 1 gehringjunior_w_dr_guara.pdf: 23074924 bytes, checksum: aa08a0280e83325282cc29f40b158fee (MD5) Previous issue date: 2016-07-06
Dans le sciage continu de bois effectué avec une scie à ruban, la conception de l'outil de coupe, l'usure et les dommages dus à l'utilisation de cet outil dans le processus de production modifient le comportement de la lame sur un cycle d'utilisation, la rendant plus ou moins instable jusqu'à perdre sa stabilité, ce qui va générer des produits sciés de mauvaise qualité. Considérer cette tendance tout au long de la vie de la scie ou de son application dans une période donnée dans des conditions réelles de coupe permet d'évaluer et projeter la scie ainsi que sa durabilité. Pour cela, la conception d'un dispositif robuste, résistant aux vibrations, aux environnements agressifs, à la saleté, tout en ayant une bonne capacité de stockage de l'information est primordiale. Le but de cette étude est de proposer un dispositif d'enregistrement de données pour surveiller l'instabilité et vibration de l'outil de coupe dans le processus de sciage du bois par scie à ruban en continu. A partir de ce scénario, les éléments du projet d'outil de coupe ont été étudiés avec pour bases l'usinage du bois, le projet de l'outil de coupe, sa géométrie et ses conséquences comme la vibration, la stabilité et l'usure. Un prototype à l'échelle de laboratoire a validé le système du préprojet et la construction de l'acquisition de données. Nous avons choisi d'utiliser le microcontrôleur Arduino qui fournit des logiciels libres de programmation permettant au système d'être fabriqué à faible coût. Dans une deuxième étape, ce mécanisme de contrôle a été appliqué à un environnement industriel de l'industrie de première transformation du bois où il peut être utilisé comme support pour l'évaluation du processus de coupe. Le dispositif s'est avéré être robuste et opérationnel dans des conditions réelles de production dans une scierie industrielle de grande envergure. Cet présent article décrit le capteur utilisé, le microcontrôleur, sa programmation et confirme qu 'avec ce dispositif de surveillance il est possible d'enregistrer les tendances de la déviation de l'outil de coupe dans le sciage du bois par scie à ruban et mesurer indirectement la qualité des pièces sciées et de la capacité du process sciage.
No serramento contínuo da madeira por serra de fita, o projeto da ferramenta de corte, o desgaste e as avarias do uso destas ferramentas no processo de produção fazem com que o comportamento da lâmina ao longo de um ciclo de uso seja mais ou menos instável, podendo perder estabilidade e impactando em produtos mal serrados. Conhecer essa tendência ao longo de toda a vida útil da serra ou mesmo a sua aplicação em dado período em condições reais de corte permite avaliar o projeto da serra e sua durabilidade. Para isso, o projeto de um dispositivo robusto, resistente a vibração e a ambientes severos e sujos, além de boa capacidade de armazenamento de informações é de grande valia. O objetivo do presente trabalho foi propor um dispositivo de registro de dados para monitorar a instabilidade/vibração da ferramenta de corte no processo de serramento da madeira por serra de fita. Com vistas a essas premissas foram estudados os elementos para o projeto da ferramenta de corte e as referências sobre os fundamentos da usinagem da madeira, o projeto da ferramenta de corte, sua geometria e causas para as decorrências como a vibração, estabilidade e desgaste. Foi construído um protótipo em escala laboratorial, onde foi validado o pré-projeto e o sistema de aquisição de dados. Optou-se pelo uso do microcontrolador Arduino que disponibiliza software livre para sua programação permitindo que o sistema possa ser reproduzido a baixo custo. Em um segundo estágio este mecanismo de controle foi expandido para um ambiente industrial madeireiro onde pôde ser utilizado como apoio para a avaliação do processo de corte. O dispositivo mostrou-se robusto e operacional em condições reais de produção em um serraria de grande porte. O presente trabalho relata o sensor usado, o microcontrolador, sua programação e afirma que por meio do monitoramento da deflexão da serra de fita é possível registrar as tendências da deflexão da ferramenta de corte em operações de serramento da madeira por serra de fita e indiretamente medir a qualidade da madeira serrada e a capabilidade do processo.
In continuous sawing wood by a large Bandsaw the cutting tool design, use and tools faults in the production process causes blade behavior over a duty cycle. The process looses stability and impacts in badly sawn products. Knowing this trend throughout the life of the blade or its application in a given period on real conditions of cut allows evaluating the project and the durability of the saw. For this, the design of a robust device, resistant to vibration, harsh and dirty environments and good information storage capacity is a big deal. The aim of this study was to propose a data recording device to monitor the instability / vibration of the cutting tool in Bandsawing process of the wood. With a view to these assumptions were studied elements for cutting tool design and references about the fundaments of wood machining, cutting tool design, geometry and the causes that origin vibration, instability and tools wear. A prototype in laboratory scale which has validated the pre-design and data acquisition system was built. We chose to use the Arduino microcontroller that provides free software to its programming allowing the system to be reproduced at low cost too. In a second stage this control mechanism has been expanded to a timber industrial environment where it might be used as support for the evaluation of the cutting process. The device proved to be robust and operational in real production conditions in a large sawmill. This paper reports the used sensor, microcontroller, its programming and states that by monitoring the bandsaw deflection is possible to record the trends of the cutting tool instability in sawing operations of wood by bandsaw and indirectly measure quality lumber and capability of the process.
Ratnaparkhe, Amol. „FIRST PRINCIPLES STUDY OF ELECTRONIC ANDVIBRATIONAL PROPERTIES OF WIDE BAND GAPOXIDE AND NITRIDE SEMICONDUCTORS“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=case1619606222502271.
Der volle Inhalt der QuelleTsai, Meng-Huang, und 蔡孟皇. „Structural analysis and vibration control of high-speed bandsaw“. Thesis, 2011. http://ndltd.ncl.edu.tw/handle/hgg5n6.
Der volle Inhalt der Quelle國立虎尾科技大學
創意工程與精密科技研究所
99
This study is focuses on structural analysis of band saw machine and vibration control, used of finite element analysis and transient response of the experimental results, find out the band saw machine vibration prone structure, reuse, reduce the size of the change to identify the direction of vibration . This article struck by the static experimental results, the hit points from many different experiments, the transient response behavior occurs in a specific number of frequencies, while the higher frequency of double column is likely to cause the hydraulic structure of excitation. Then re-use finite element software Ansys Workbench simulation and actual experimental data with each other than its accuracy, Modal response analysis from the three parts also show that in the two-pillar structure of hydraulic pressure is unstable, easily cutting band saw machine is stable and not easily able to create the structure of the resonance states appear in the frequency will affect the cutting of the response, its frequency is easier to influence the occurrence of vibration of cutting elements. The finite element simulation results can be obtained in three different forms of structural modifications, the same length and width of the rectangle to change the frequency on the H group of the lowest vibration characteristics to simulate the three-part analysis of the structural comparison, and know the most H-type pattern for the length of the structure to change the width of the rectangle, this structure forms a more effective in reducing the vibration of the structure in the cutting, because the Y axis of this structure is reinforced structure, it can determine that some of them might in the Y-axis is caused by the vibration of the main reasons for the impact, however, modify the size of the differences after the resonance is not, but could be back from that direction can be modified for the domestic stability of band sawing machine designed to provide objective basis.
(6532391), Nicolas Guarin-Zapata. „Modeling and Analysis of Wave and Damaging Phenomena in Biological and Bioinspired Materials“. Thesis, 2021.
Den vollen Inhalt der Quelle findenThere is a current interest in exploring novel microstructural architectures that take advantage of the response of independent phases. Current guidelines in materials design are not just based on changing the properties of the different phases but also on modifying its base architecture. Hence, the mechanical behavior of composite materials can be adjusted by designing microstructures that alternate stiff and flexible constituents, combined with well-designed architectures. One source of inspiration to achieve these designs is Nature, where biologically mineralized composites can be taken as an example for the design of next-generation structural materials due to their low density, high-strength, and toughness currently unmatched by engineering technologies.
The present work focuses on the modeling of biologically inspired composites, where the source of inspiration is the dactyl club of the Stomatopod. Particularly, we built computational models for different regions of the dactyl club, namely: periodic and impact regions. Thus, this research aimed to analyze the effect of microstructure present in the impact and periodic regions in the impact resistance associated with the materials present in the appendage of stomatopods. The main contributions of this work are twofold. First, we built a model that helped to study wave propagation in the periodic region. This helped to identify possible bandgaps and their influence on the wave propagation through the material. Later on, we extended what we learned from this material to study the bandgap tuning in bioinspired composites. Second, we helped to unveil new microstructural features in the impact region of the dactyl club. Specifically, the sinusoidally helicoidal composite and bicontinuous particulate layer. For these, structural features we developed finite element models to understand their mechanical behavior.
The results in this work help to elucidate some new microstructures and present some guidelines in the design of architectured materials. By combining the current synthesis and advanced manufacturing methods with design elements from these biological structures we can realize potential blueprints for a new generation of advanced materials with a broad range of applications. Some of the possible applications include impact- and vibration-resistant coatings for buildings, body armors, aircraft, and automobiles, as well as in abrasion- and impact-resistant wind turbines.
Buchteile zum Thema "Vibration bandgap"
Yuan, Weiting, und Qibo Mao. „Experimental Study of Bending Vibration Bandgaps for an Acoustic Metamaterial Beam“. In Lecture Notes in Mechanical Engineering, 272–78. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-8864-8_26.
Der volle Inhalt der QuelleDeng, Jie. „Low-frequency bandgaps by topological acoustic black holes“. In Phonons - Recent Advances, New Perspectives and Applications [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.1005765.
Der volle Inhalt der QuelleSahu, Rajesh, S. K. Jain und Balram Tripathi. „A Comparative Study on Visible Light Induced Photocatalytic Activity of MWCNTs Decorated Sulfide Based (ZnS & CdS) Nano Photocatalysts“. In Advanced Materials and Nano Systems: Theory and Experiment - Part 2, 179–98. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049961122020013.
Der volle Inhalt der QuelleKhalid, S. „Advanced Electric Propulsion Systems for Hybrid Electric Vehicles“. In Advances in Mechatronics and Mechanical Engineering, 1–54. IGI Global, 2024. https://doi.org/10.4018/979-8-3693-5797-2.ch001.
Der volle Inhalt der QuelleThomas, Michael E. „Optical Propagation in Solids“. In Optical Propagation in Linear Media. Oxford University Press, 2006. http://dx.doi.org/10.1093/oso/9780195091618.003.0013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vibration bandgap"
Singhapurage, Helani A. S., Dinusha M. Senarathna, Jeremy Sylvester, Chandra P. Neupane und F. Ganikhanov. „Ultrafast Coherent Raman Study of Lattice Vibration Dynamics in Wide-bandgap Semiconductors“. In CLEO: Applications and Technology, JTu2A.127. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.127.
Der volle Inhalt der QuelleAnigbogu, Winner, und Hamzeh Bardaweel. „Concurrent Passive Broadband Vibration Suppression and Energy Harvesting Using a Dual-Purpose Magnetoelastic Metamaterial Structure: Experimental Validation and Modeling“. In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-67652.
Der volle Inhalt der QuelleChavan, Shantanu, und Vijaya V. N. Sriram Malladi. „Programmable Bandgaps in Meta-Structures With Dynamic Vibration Resonators“. In ASME 2023 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/smasis2023-112818.
Der volle Inhalt der QuelleSugino, Christopher, Stephen Leadenham, Massimo Ruzzene und Alper Erturk. „Modal Analysis of Bandgap Formation for Vibration Attenuation in Locally Resonant Finite Beams“. In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-60552.
Der volle Inhalt der QuelleLeGrande, Joshua, Mohammad Bukhari und Oumar Barry. „Topological Properties and Localized Vibration Modes in Quasiperiodic Metamaterials With Electromechanical Local Resonators“. In ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/detc2022-90025.
Der volle Inhalt der QuelleAstudillo, Diego, und Rafael O. Ruiz. „Resonator-Based Piezoelectric Metastructures: Efficient Bandgap Estimation and Parametric Analysis“. In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-110579.
Der volle Inhalt der QuelleSong, Yihao, und Yanfeng Shen. „Shape Memory Metamaterials With Adaptive Bandgaps for Ultra-Wide Frequency Spectrum Vibration Control“. In ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10902.
Der volle Inhalt der QuelleSugino, Christopher, Stephen Leadenham, Massimo Ruzzene und Alper Erturk. „Electroelastic Bandgap Formation in Locally Resonant Metamaterial Beams With Piezoelectric Shunts: A Modal Analysis Approach“. In ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/smasis2016-9282.
Der volle Inhalt der QuelleSugino, Christopher, Massimo Ruzzene und Alper Erturk. „Dynamics of Hybrid Mechanical-Electromechanical Locally Resonant Piezoelectric Metastructures“. In ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3948.
Der volle Inhalt der QuelleCHOI, JEWOO, TONGJUN CHO, SANG GEUN BAE und HYO SEON PARK. „EXPERIMENTAL INVESTIGATION ON FLEXURAL VIBRATION CONTROL OF LARGE-SCALE REINFORCED CONCRETE METAPLATES“. In Structural Health Monitoring 2023. Destech Publications, Inc., 2023. http://dx.doi.org/10.12783/shm2023/36999.
Der volle Inhalt der Quelle