Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Vibrating intrinsic reverberation chamber.

Zeitschriftenartikel zum Thema „Vibrating intrinsic reverberation chamber“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-16 Zeitschriftenartikel für die Forschung zum Thema "Vibrating intrinsic reverberation chamber" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Kouveliotis, N. K., P. T. Trakadas und C. N. Capsalis. „FDTD Modeling of a Vibrating Intrinsic Reverberation Chamber“. Progress In Electromagnetics Research 39 (2003): 47–59. http://dx.doi.org/10.2528/pier02050804.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Serra, Ramiro, und Andres Rodriguez. „Vibrating Intrinsic Reverberation Chamber for Electromagnetic Compatibility Measurements“. IEEE Latin America Transactions 11, Nr. 1 (Februar 2013): 389–95. http://dx.doi.org/10.1109/tla.2013.6502835.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Kouveliotis, N. K., P. T. Trakadas und C. N. Capsalis. „FDTD MODELING OF A VIBRATING INTRINSIC REVERBERATION CHAMBER - Abstract“. Journal of Electromagnetic Waves and Applications 17, Nr. 6 (Januar 2003): 849–50. http://dx.doi.org/10.1163/156939303322503394.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kouveliotis, N. K., P. T. Trakadas und C. N. Capsalis. „FDTD calculation of quality factor of vibrating intrinsic reverberation chamber“. Electronics Letters 38, Nr. 16 (2002): 861. http://dx.doi.org/10.1049/el:20020576.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Cheng, Erwei, Pingping Wang, Qian Xu, Cui Meng und Rui Jia. „Design and Measurement of a Vibrating Intrinsic Reverberation Chamber Working in Tuned Mode“. International Journal of Antennas and Propagation 2023 (16.01.2023): 1–6. http://dx.doi.org/10.1155/2023/3466400.

Der volle Inhalt der Quelle
Annotation:
In this letter, a vibrating intrinsic reverberation chamber (VIRC) working in mode tuning is designed and fabricated; the designed RC is made of a highly electrically conductive silver fabric. A stepper motor is used to tune the cavity surface step by step along its normal direction, and an RC with vibrating wall is realized. The corresponding relationship between the vibrating amplitude and frequency of use is calculated. A test system is developed and the performance of VIRC is experimentally verified. Measurement results show that the measured E-field samples follow a Rician distribution, and the standard deviation of the space E-field is less than 3 dB, which meets the requirements of statistical uniformity tolerance in IEC 61000-4-21.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kouveliotis, N. K., P. T. Trakadas, I. I. Hairetakis und C. N. Capsalis. „Experimental investigation of the field conditions in a vibrating intrinsic reverberation chamber“. Microwave and Optical Technology Letters 40, Nr. 1 (2003): 35–38. http://dx.doi.org/10.1002/mop.11279.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Kouveliotis, N. K., P. T. Trakadas und C. N. Capsalis. „Examination of field uniformity in vibrating intrinsic reverberation chamber using the FDTD method“. Electronics Letters 38, Nr. 3 (2002): 109. http://dx.doi.org/10.1049/el:20020076.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Andrieu, Guillaume, Narjes Meddeb, Charles Jullien und Nicolas Ticaud. „Complete Framework for Frequency and Time-Domain Performance Assessment of Vibrating Intrinsic Reverberation Chambers“. IEEE Transactions on Electromagnetic Compatibility 62, Nr. 5 (Oktober 2020): 1911–20. http://dx.doi.org/10.1109/temc.2020.2966741.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhao, Huapeng, und Zhongxiang Shen. „MODAL-EXPANSION ANALYSIS OF A MONOPOLE IN VIBRATING REVERBERATION CHAMBER“. Progress In Electromagnetics Research 85 (2008): 303–22. http://dx.doi.org/10.2528/pier08090209.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Kouveliotis, N. K., P. T. Trakadas und C. N. Capsalis. „Theoretical investigation of the field conditions in a vibrating reverberation chamber with an unstirred component“. IEEE Transactions on Electromagnetic Compatibility 45, Nr. 1 (Februar 2003): 77–81. http://dx.doi.org/10.1109/temc.2002.808072.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Koukounian, Viken N., und Chris K. Mechefske. „Commissioning of an Atypical Acoustic Facility for Experimental Testing“. Journal of the IEST 59, Nr. 1 (01.01.2016): 22–39. http://dx.doi.org/10.17764/1098-4321.59.1.22.

Der volle Inhalt der Quelle
Annotation:
Abstract Computational modeling (BEM, FEM, and SEA) is often implemented at different stages of the design process to optimize manufacturing and performance parameters. Computational results are typically verified experimentally. Experimental testing standards, particularly those related to vibro-acoustic testing, are defined by various agencies such as ASTM, ANSI, and ISO. An investigation proposing a new computational methodology of analyzing the vibro-acoustic behavior of an aircraft fuselage due to the turbulent boundary layer required verification of the predictions experimentally. In the face of certain limitations, an atypical acoustic facility was constructed challenging conventional standards while complying with the defined criteria of international testing standards. Principal deviations relate to the geometric requirements that recommend large volumes of certain construct, and microphone and acoustic source positioning. The calculated 95% confidence intervals compared exceptionally well against defined criteria (strictest measure is 1 for frequencies greater than 315 Hz) by averaging less than 0.4 for each test product across a frequency range that exceeded is the range specified by ASTM E90. The requirements for qualification of the reverberation chamber according to ANSI S12.51 were also satisfied, with the exception of measurements at 125 Hz and 160 Hz that observed heightened sensitivity due to near field effects and room modes. The calculated permissible ratio of decay variation showed good agreement against ASTM C423 criteria despite the intrinsic challenge of creating a diffuse and reverberant field in a confined, or constricting, volume. The last compliance measure reviewed flanking to ensure acceptable signal-to-noise ratio. It was clearly demonstrated that the silenced sound pressure levels (with the presence of the specimen) were greater than 10 dB above the background sound pressure levels (with the consequences of flanking considered). The investigation confirmed the feasibility of using an atypical acoustic facility to comply with various international testing standards. The noted deviations and shortcomings are not specific to the presented work, but are common challenges that all facilities observe.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Hara, Makoto, Jianqing Wang und Frank Leferink. „Effect of Wall Shaking Amplitude on Vibrating Intrinsic Reverberation Chamber Characteristics“. IEEE Transactions on Electromagnetic Compatibility, 2023, 1–8. http://dx.doi.org/10.1109/temc.2023.3331056.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Rammal, Youssef, Guillaume Andrieu, Nicolas Ticaud, Nicolas Roger, Alexandre Laisné und Philippe Pouliguen. „Stirring Process Optimization of a Vibrating Intrinsic Reverberation Chamber Using Scattering Parameter Measurements“. IEEE Transactions on Electromagnetic Compatibility, 2023, 1–8. http://dx.doi.org/10.1109/temc.2023.3331898.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Mahiddini, Florian, Guillaume Andrieu, Nicolas Bui und Christophe Guiffaut. „Simulation of Vibrating Intrinsic Reverberation Chambers Using an FDTD Conformal Mesh“. IEEE Transactions on Electromagnetic Compatibility, 2023, 1–8. http://dx.doi.org/10.1109/temc.2023.3259241.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

HARA, Makoto, Jianqing WANG und Frank LEFERINK. „Numerical Derivation of Design Guidelines for Tightness and Shaking Amplitude of Vibrating Intrinsic Reverberation Chamber by Method of Moment“. IEICE Transactions on Communications, 2023. http://dx.doi.org/10.1587/transcom.2023ebp3002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Schipper, Hans, und Frank Leferink. „Degradation of Dynamic Range for Shielding Effectiveness Measurements Due to Long-Term Use of a Dual Vibrating Intrinsic Reverberation Chamber“. IEEE Transactions on Electromagnetic Compatibility, 2022, 1–7. http://dx.doi.org/10.1109/temc.2022.3202352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie