Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vertebrates Morphology“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vertebrates Morphology" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vertebrates Morphology"
Root, Zachary D., Claire Gould, Margaux Brewer, David Jandzik und Daniel M. Medeiros. „Comparative Approaches in Vertebrate Cartilage Histogenesis and Regulation: Insights from Lampreys and Hagfishes“. Diversity 13, Nr. 9 (10.09.2021): 435. http://dx.doi.org/10.3390/d13090435.
Der volle Inhalt der QuelleBurke, A. C., C. E. Nelson, B. A. Morgan und C. Tabin. „Hox genes and the evolution of vertebrate axial morphology“. Development 121, Nr. 2 (01.02.1995): 333–46. http://dx.doi.org/10.1242/dev.121.2.333.
Der volle Inhalt der QuelleEilam, David. „Comparative Morphology of Locomotion in Vertebrates“. Journal of Motor Behavior 27, Nr. 1 (März 1995): 100–111. http://dx.doi.org/10.1080/00222895.1995.9941703.
Der volle Inhalt der QuelleRossi, Valentina, Maria E. McNamara, Sam M. Webb, Shosuke Ito und Kazumasa Wakamatsu. „Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct vertebrates“. Proceedings of the National Academy of Sciences 116, Nr. 36 (19.08.2019): 17880–89. http://dx.doi.org/10.1073/pnas.1820285116.
Der volle Inhalt der QuelleWitter, Menno P., Heidi Kleven und Asgeir Kobro Flatmoen. „Comparative Contemplations on the Hippocampus“. Brain, Behavior and Evolution 90, Nr. 1 (2017): 15–24. http://dx.doi.org/10.1159/000475703.
Der volle Inhalt der QuelleHenderson, V., und M. J. Song. „Morphology of mitochondria in a teleost, salmo gairdneri“. Proceedings, annual meeting, Electron Microscopy Society of America 44 (August 1986): 194–95. http://dx.doi.org/10.1017/s0424820100142591.
Der volle Inhalt der QuelleSrikulnath, Kornsorn, Syed Farhan Ahmad, Worapong Singchat und Thitipong Panthum. „Why Do Some Vertebrates Have Microchromosomes?“ Cells 10, Nr. 9 (24.08.2021): 2182. http://dx.doi.org/10.3390/cells10092182.
Der volle Inhalt der QuelleSchwenk, Kurt, und Günter P. Wagner. „Visualizing vertebrates: new methods in functional morphology“. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 313A, Nr. 5 (20.04.2010): 241–43. http://dx.doi.org/10.1002/jez.608.
Der volle Inhalt der QuelleMiyashita, Tetsuto, Michael I. Coates, Robert Farrar, Peter Larson, Phillip L. Manning, Roy A. Wogelius, Nicholas P. Edwards et al. „Hagfish from the Cretaceous Tethys Sea and a reconciliation of the morphological–molecular conflict in early vertebrate phylogeny“. Proceedings of the National Academy of Sciences 116, Nr. 6 (22.01.2019): 2146–51. http://dx.doi.org/10.1073/pnas.1814794116.
Der volle Inhalt der QuelleSakashita, Misaki, Shintaro Yamasaki, Kentaro Yaji, Atsushi Kawamoto und Shigeru Kondo. „Three-dimensional topology optimization model to simulate the external shapes of bone“. PLOS Computational Biology 17, Nr. 6 (16.06.2021): e1009043. http://dx.doi.org/10.1371/journal.pcbi.1009043.
Der volle Inhalt der QuelleDissertationen zum Thema "Vertebrates Morphology"
Brazeau, Martin D. „Endocranial Morphology and Phylogeny of Palaeozoic Gnathostomes (Jawed Vertebrates)“. Doctoral thesis, Uppsala universitet, Evolutionär organismbiologi, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-9360.
Der volle Inhalt der QuelleLewis, Philip Nigel. „The morphology and function of the peritoneum in lower vertebrates with special reference to teleosts“. Thesis, University of Stirling, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.391492.
Der volle Inhalt der QuelleJones, Christopher David Stanford. „On the cross-sectional form of the patella in several primates“. Title page, table of contents and abstract only, 2003. http://web4.library.adelaide.edu.au/theses/09PH/09phj764.pdf.
Der volle Inhalt der QuelleBoonzaier, Julia. „Morphology and mucin histochemistry of the gastrointestinal tracts of three insectivorous mammals : Acomys spinosissimus, Crocidura cyanea and Amblysomus hottentotus“. Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/20220.
Der volle Inhalt der QuelleENGLISH ABSTRACT: The gastrointestinal morphology and the distribution of the different types of mucin secreting goblet cells were investigated in three mammalian insectivorous species, namely A. spinosissimus, C. cyanea and A. hottentotus. The aim of the study was to provide a comprehensive morphological comparison between the different species. Another aim was to illustrate and compare the distribution of mucins (neutral, sulfo- and sialomucins) in the gastrointestinal tracts (GITs) of these species, in order to better understand the quality of the biofilm in the GIT. Mucins secreted onto the surface of the GIT have an effect on the colonisation of microflora in the mucosal layer, constructing a biofilm which protects the GIT surface from opportunistic pathogens. The shape, proportional length, and proportional surface areas of the different gastrointestinal regions were recorded and compared in the three species. Histochemical staining methods were used to detect and to distinguish between neutral, sulfo- and sialomucins. The number of goblet cells in the GIT containing each of the above mucins in the epithelium lining the surface or crypts was quantified, and the data expressed as the number of neutral, sulfo- or sialomucin containing goblet cells per mm2 of the surface or crypt epithelium. In all three species the stomach was uncompartmentalised. The internal aspect of the stomach in A. spinosissimus was hemi-glandular, containing stratified squamous epithelium in the fundus, with glandular epithelium in the body and pyloric region. However, C. cyanea and A. hottentotus had wholly glandular stomachs. A. spinosissimus was the only species studied that had a caecum which demonstrated transverse mucosal folds and V-shaped mucosal folds in the proximal colon. Both C. cyanea and A. hottentotus had villi up to the distal part of the GIT. Longitudinal mucosal folds were present in the distal colon. The GITs of both C. cyanea and A. hottentotus showed little morphological differentiation namely a simple, glandular stomach and the lack of a caecum. Mixed (neutral and acid) mucins and mixed acid (sulfo- and sialomucins) mucin secreting goblet cells were prominent mucin cell types in all three mammalian insectivorous species. Despite these general similarities, marked differences were observed in the qualitative expression and distribution of the three types of mucins throughout the GIT. The overall similarity between the three insectivores and other distantly related mammalian species suggests that mixed mucin secreting goblet cell types are prominent contributors to the maintenance of the intestinal biofilm in the majority of mammals, irrespective of their diet or taxonomy.
AFRIKAANSE OPSOMMING: Die bestudering van die morfologie van die spysverteringskanaal (SVK) en die verspreiding van die verskillende musien produserende bekerselle was in drie insek-etende soogdier spesies uitgevoer, naamlik in A. spinosissimus, C. cyanea en A. hottentotus. Die doel van die studie was om „n omvattende morfologiese vergelyking te maak tussen die drie spesies, sowel as om die verspreiding van die verskillende musiene te beskryf in die SVK. Kennis van die verspreiding van die verskillende tipes musiene (neutral, sulfaat en nie-sulfaat bevattende musiene) kan moontlik inligting verskaf aangaande die kwaliteit van die biofilm in the SVK. Die laasgenoemde musiene wat gesekreteer word op die oppervlak van die SVK, bepaal die kolonisasie van die mikroflora in die mukosale laag wat „n biofilm vorm en die SVK beskerm teen patogene. Die vorm, proportionele lengte en proportionele oppervlaks areas van die verskillende SVK gebiede is opgeteken, waarna dit vergelyk is tussen die drie insektivore spesies. Histochemiese kleurings tegnieke is gebruik om die musiene waar te neem en om te onderskei tussen die neutraal, sulfaat en nie-sulfaat bevattende musiene. Die aantal beker selle wat elk van die bogenoemde musiene bevat het, is getel in die oppervlaks epiteel- en kript areas van die SVK. Hierdie data is weergegee as die aantal neutraal, sulfaat en nie-sulfaat bevattende beker selle per oppervlaks epiteel- of kript area (mm2). Die vorm van die maag in al drie spesies was eenvoudig en nie gekompartementaliseer nie. Die interne aspek van die maag in A. spinosissimus het meerlagige plaveisel epiteel in die fundus gehad en klieragtige epiteel in die liggaam en pilorus gedeeltes. Daarbenewens het C. cyanea en A. hottentotus slegs klieragtige epiteel in die maag gehad. A. spinosissimus was die enigste spesie in hierdie studie wat „n sekum gehad het met dwars voue, asook V-vormige mukosale voue in die proksimale kolon. Beide C. cyanea en A. hottentotus het villi tot in die distale gedeelte van die SVK gehad. Longitudinale mukosale voue was teenwoordig in die distale gedeelte van die kolon. Die SVK van beide C. cyanea en A. hottentotus het min morfologiese differensiasie getoon deurdat die spesies „n eenvoudige, klieragtige maag gehad het en geen sekum nie. Gemenge (neutral en suur) musiene asook gemengde suur (sulfaat en nie-sulfaat bevattende) musiene was die dominante musien tipes in the SVK van al drie insek-etende soogdier spesies. Ten spyte van die algemene ooreenkomste, was daar merkwaardige verskille in die getalle en verspreiding van die verskillende musiene in die SVK. Die algemene ooreenkomste tussen die drie insektivore soogdier spesies met soogdiere van ander families, stel voor dat die gemende musien sekreterende beker selle „n prominente bydrae maak tot die onderhoud van die biofilm in the SVK in die meerderheid van soogdiere, ongeag van hul dieet of spesie klassifikasie.
Sylvester, Jonathan Blaylock. „Brain diversity develops early: a study on the role of patterning on vertebrate brain evolution“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42744.
Der volle Inhalt der QuelleJessee, Lance D., Austin Gause und Blaine W. Schubert. „Intervertebral Variation of North American Pit Vipers (Squamata, Viperidae) Using Geometric Morphometrics“. Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/95.
Der volle Inhalt der QuelleGause, Austin R. J., Lance D. Jessee und Blaine W. Schubert. „Geometric Morphometric Analysis of Intervertebral Variation in Colubrid Snakes“. Digital Commons @ East Tennessee State University, 2019. https://dc.etsu.edu/asrf/2019/schedule/199.
Der volle Inhalt der QuelleCotter, Meghan Marie. „Gross Morphology, Microarchitecture, Strength and Evolution of the Hominoid Vertebral Body“. Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1295890557.
Der volle Inhalt der QuelleKraig, Sarah Elizabeth. „Morphology and systematic implications of fossil and recent Lamnid shark vertebrae using computerized tomography (CT-scanning)“. Diss., Connect to online resource - MSU authorized users, 2008.
Den vollen Inhalt der Quelle findenRamzu, Mohamed Yassin A. „Etude de la regionalisation de la colonne vertebrale en fonction des modes de nage chez les teleosteens. Morphologie, histologie, croissance“. Paris 7, 1994. http://www.theses.fr/1994PA077291.
Der volle Inhalt der QuelleBücher zum Thema "Vertebrates Morphology"
International Symposium on Vertebrate Morphology (2nd 1986 Vienna, Austria). Tren ds in vertebrate morphology: Proceedings of the 2nd International Symposium on Vertebrate Morphology, Vienna, 1986. Stuttgart: G. Fischer Verlag, 1989.
Den vollen Inhalt der Quelle findenVertebrate flight: Mechanics, physiology, morphology, ecology and evolution. Berlin: Springer-Verlag, 1990.
Den vollen Inhalt der Quelle findenHildebrand, Milton. Analysis of vertebrate structure. 3. Aufl. New York: Wiley, 1988.
Den vollen Inhalt der Quelle findenE, Goslow G., Hrsg. Analysis of vertebrate structure. 5. Aufl. New York: John Wiley, 2001.
Den vollen Inhalt der Quelle findenHildebrand, Milton. Analysis of vertebrate structure. 4. Aufl. New York: J. Wiley, 1995.
Den vollen Inhalt der Quelle findenWhat your fossils can tell you: Vertebrate morphology, pathology and cultural modification. Gainesville: University Press of Florida, 2010.
Den vollen Inhalt der Quelle findenMossman, Harland W. Vertebrate fetal membranes: Comparative ontogeny and morphology ; evolution ; phytogenetic significance. New Brunswick, N. J: Rutgers University Press, 1987.
Den vollen Inhalt der Quelle findenVertebral morphology, alternation of neural spine height, and structure in Permo-Carboniferous tetrapods, and a reappraisal of primitive modes of terrestrial locomotion. Berkeley: University of California Press, 1990.
Den vollen Inhalt der Quelle findenVertebrate fetal membranes: Comparative ontogeny and morphology; evolution; phylogenetic significance; basic functions; research opportunities. Basingstoke: Macmillan, 1987.
Den vollen Inhalt der Quelle findenMikhailov, K. E. Fossil and recent eggshell in amniotic vertebrates: Fine structure, comparative morphology and classification. London: The Palaeontological Association, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Vertebrates Morphology"
Gidmark, Nicholas J., Kelsie Pos, Bonne Matheson, Esai Ponce und Mark W. Westneat. „Functional Morphology and Biomechanics of Feeding in Fishes“. In Feeding in Vertebrates, 297–332. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13739-7_9.
Der volle Inhalt der QuelleBrainerd, Elizabeth L., und Ariel L. Camp. „Functional Morphology of Vertebrate Feeding Systems: New Insights from XROMM and Fluoromicrometry“. In Feeding in Vertebrates, 21–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13739-7_2.
Der volle Inhalt der QuelleVinyard, Christopher J., Mark F. Teaford, Christine E. Wall und Andrea B. Taylor. „The Masticatory Apparatus of Humans (Homo sapiens): Evolution and Comparative Functional Morphology“. In Feeding in Vertebrates, 831–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-13739-7_21.
Der volle Inhalt der QuelleWeishampel, David B. „A Theoretical Morphological Approach to Tooth Replacement in Lower Vertebrates“. In Constructional Morphology and Evolution, 295–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76156-0_20.
Der volle Inhalt der QuelleDodt, E. „Light Sensitivity of the Pineal Organ in Poikilothermic and Homeothermic Vertebrates“. In Functional Morphology of Neuroendocrine Systems, 123–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-72886-0_9.
Der volle Inhalt der QuelleRahmann, Hinrich, und Mathilde Rahmann. „Functional Morphology of the Nervous System in Vertebrates“. In The Neurobiological Basis of Memory and Behavior, 45–91. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4612-2772-4_3.
Der volle Inhalt der Quelley Cajal, Santiago Ramón. „Morphology of the Nerve Cell (Continuation)“. In Texture of the Nervous System of Man and the Vertebrates, 53–83. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6435-8_4.
Der volle Inhalt der QuelleReinecke, M., D. Betzler, H. Segner und W. G. Forssmann. „Dual distribution of cardiac hormones (CDD/ANP) in the heart and brain of vertebrates“. In Functional Morphology of the Endocrine Heart, 87–93. Heidelberg: Steinkopff, 1989. http://dx.doi.org/10.1007/978-3-642-72432-9_9.
Der volle Inhalt der QuelleMeisner, Donna Holmes. „Histology and Gross Morphology of the Sexually Dimorphic Sternal Gland in the North American Opossum, Didelphis Virginiana Kerr“. In Chemical Signals in Vertebrates 4, 579–85. Boston, MA: Springer US, 1986. http://dx.doi.org/10.1007/978-1-4613-2235-1_46.
Der volle Inhalt der Quelley Cajal, Santiago Ramón. „Physiologic Inferences from the Morphology and Connectivity of Neurons“. In Texture of the Nervous System of Man and the Vertebrates, 85–122. Vienna: Springer Vienna, 1999. http://dx.doi.org/10.1007/978-3-7091-6435-8_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vertebrates Morphology"
Chiesa, Elena, Paola Irato und Gianfranco Santovito. „THE CIRCULATORY SYSTEM OF VERTEBRATES AND INVERTEBRATES: AN EMPIRICAL RESEARCH TO INTRODUCE IN THE FOURTH CLASS THE TREATMENT OF ANIMAL MORPHOLOGY IN A COMPARATIVE KEY“. In 13th International Technology, Education and Development Conference. IATED, 2019. http://dx.doi.org/10.21125/inted.2019.0391.
Der volle Inhalt der QuelleLim, Poay Hoon, Ulas Bagci, Omer Aras und Li Bai. „Identification of spinal vertebrae using mathematical morphology and level set method“. In 2011 IEEE Nuclear Science Symposium and Medical Imaging Conference (2011 NSS/MIC). IEEE, 2011. http://dx.doi.org/10.1109/nssmic.2011.6152563.
Der volle Inhalt der QuelleKode, Swathi, Nicole A. Kallemeyn, Joseph D. Smucker, Douglas C. Fredericks und Nicole M. Grosland. „Adaptive Bone Remodeling Theory Applied to Cervical Laminoplasty“. In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53262.
Der volle Inhalt der QuelleThrane, Lars, Thomas M. Jørgensen und Jörg Männer. „Optical tissue clearing improves usability of optical coherence tomography (OCT) for high-throughput analysis of the internal structure and 3D morphology of small biological objects such as vertebrate embryos“. In SPIE BiOS, herausgegeben von Andrew M. Rollins, Cecilia W. Lo und Scott E. Fraser. SPIE, 2014. http://dx.doi.org/10.1117/12.2037303.
Der volle Inhalt der Quelle