Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ventilation design“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ventilation design" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ventilation design"
Heiselberg, Per. „Natural Ventilation Design“. International Journal of Ventilation 2, Nr. 4 (April 2004): 295–312. http://dx.doi.org/10.1080/14733315.2004.11683674.
Der volle Inhalt der QuelleKolandaivelu, Kumaran, und Chi-Sang Poon. „A miniature mechanical ventilator for newborn mice“. Journal of Applied Physiology 84, Nr. 2 (01.02.1998): 733–39. http://dx.doi.org/10.1152/jappl.1998.84.2.733.
Der volle Inhalt der QuelleBudiyani ; Budianastas Prastyatama, Ansheila Gabriela. „EVALUATION AND EXPERIMENT OF INTERLOCKING BRICK MODULE DESIGN TO OBTAIN VARIETIES OF VENTILATION OPENING AREA ON WALL“. Riset Arsitektur (RISA) 4, Nr. 03 (30.05.2020): 269–87. http://dx.doi.org/10.26593/risa.v4i03.3932.269-287.
Der volle Inhalt der QuelleHIRAI, Takuo. „Tunnel Ventilation Design & Build“. Journal of the Society of Mechanical Engineers 114, Nr. 1108 (2011): 160–62. http://dx.doi.org/10.1299/jsmemag.114.1108_160.
Der volle Inhalt der QuelleMoore, Philip J. „Ventilation Tube Duration versus Design“. Annals of Otology, Rhinology & Laryngology 99, Nr. 9 (September 1990): 722–23. http://dx.doi.org/10.1177/000348949009900910.
Der volle Inhalt der QuelleMossad, R. R. „Optimization of the Ventilation System for a Forced Ventilation Piggery“. Journal of Green Building 4, Nr. 4 (01.11.2009): 113–33. http://dx.doi.org/10.3992/jgb.4.4.113.
Der volle Inhalt der QuelleYoon, Nari, Mary Ann Piette, Jung Min Han, Wentao Wu und Ali Malkawi. „Optimization of Window Positions for Wind-Driven Natural Ventilation Performance“. Energies 13, Nr. 10 (14.05.2020): 2464. http://dx.doi.org/10.3390/en13102464.
Der volle Inhalt der QuelleLee, Dong-kil. „Optimal design of mine ventilation system using a ventilation improvement index“. Journal of Mining Science 52, Nr. 4 (Juli 2016): 762–77. http://dx.doi.org/10.1134/s1062739116041178.
Der volle Inhalt der QuelleWu, Yan-Lin, Yu-Lieh Wu und Azka Hasya Hanifan. „Study on Ventilation Performance in Operating Room with Variation Ventilation Design“. Journal of Physics: Conference Series 1500 (April 2020): 012040. http://dx.doi.org/10.1088/1742-6596/1500/1/012040.
Der volle Inhalt der QuelleHunt, G. R., und K. Syrios. „Roof-Mounted Ventilation Towers – Design Criteria for Enhanced Buoyancy-Driven Ventilation“. International Journal of Ventilation 3, Nr. 3 (Dezember 2004): 193–208. http://dx.doi.org/10.1080/14733315.2004.11683914.
Der volle Inhalt der QuelleDissertationen zum Thema "Ventilation design"
Kenton, Amanda Gail. „Natural ventilation in theatre design“. Thesis, University of Cambridge, 2006. https://www.repository.cam.ac.uk/handle/1810/252011.
Der volle Inhalt der QuelleKuegler, Kurt W. „Heating, ventilation and air conditioning engineering and design /“. Online version of thesis, 1990. http://hdl.handle.net/1850/10982.
Der volle Inhalt der QuelleTantasavasdi, Chalermwat 1971. „Natural ventilation : design for suburban houses in Thailand“. Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/70306.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 93-95).
Natural Ventilation is the most effective passive cooling design strategy for architecture in hot and humid climates. In Thailand, natural ventilation has been the most essential element in the vernacular architecture such as the traditional house, but has become unused nowadays because of the urbanized conditions in big cities like Bangkok. This thesis explores the potential of using natural ventilation for modern houses by using a Computational Fluid Dynamics (CFD) program. The research investigates the characteristics of Thai houses from the past to the present that climate, culture and technology have influenced. The analysis of the climate data concludes that natural ventilation can be used approximately four months a year to create conditions within the zone of thermal comfort. In a suburban housing project, site planning has a significant impact on the wind pattern and velocity. The simulation results indicate that the wind has better characteristics in the houses with square shapes than those with rectangular shapes. The vegetation around the houses also has some effect on the wind by slightly reducing its speed. Lastly, the prevailing winds from the north and north-northeast have similar wind patterns in a large housing project. The final stage is to design a prototype by using some climatic characteristics from the traditional Thai house. The air movement is inadequate in a house with regular size windows. Therefore, the study tests three more cases with larger windows. The results demonstrate that the maximum size window provides better thermal comfort. Finally, the study finds that the stack effect is negligible. The study shows the possibility to use natural ventilation for the houses in this region. The investigation has developed comprehensive design guidelines for architects. Necessary further research is presented in the end to find more solutions for climate-responsive architecture in today's physical conditions.
by Chalermwat Tantasavasdi.
M.S.
Alfadil, Mohammad Omar. „Design Tool for a Ground-Coupled Ventilation System“. Diss., Virginia Tech, 2019. http://hdl.handle.net/10919/100604.
Der volle Inhalt der QuelleDoctor of Philosophy
Kinsman, Roger Gordon. „Outlet discharge coefficients of ventilation ducts“. Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59271.
Der volle Inhalt der QuelleDischarge coefficients of a wooden ventilation duct 8.54 metres in length and of a constant 0.17 m$ sp2$ cross sectional area were measured. Four different outlet shapes and 3 aperture ratios of each shape were tested. A split plot experimental design was used to evaluate the effect of outlet shape, outlet size, and distance from the fan on discharge coefficient. The relationship between duct performance characteristics and discharge coefficient was examined. A mathematical equation to predict the discharge coefficient was developed and tested.
Discharge coefficient values measured ranged from 0.19 to 1.25 depending on the aperture ratio and distance from the fan. Outlet shape had no significant effect. The apparent effects of aperture ratio and size are due to the effects of head ratio. The equation predicting the discharge coefficient had a maximum error of 5 percent for the aperture ratios of 0.5 and 1.0, and 15 percent at an aperture ratio of 1.5.
MacKinnon, Ian R. (Ian Roderick) 1964. „Air distribution from ventilation ducts“. Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59655.
Der volle Inhalt der QuelleHurtado, Mark Pastor. „Optimum Design of Compact, Quiet, and Efficient Ventilation Fans“. Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96519.
Der volle Inhalt der QuelleDoctor of Philosophy
Axial ventilation fans are widely used to improve the air quality, remove contaminants, and to control the temperature and humidity in occupied areas. However, high noise levels from ventilations fans are a harmful source of noise that can lead to irreversible noise-induced hearing loss. Therefore, this work addresses a critical need for quiet and efficient ventilation fans. To this end, a new innovative comprehensive optimum design methodology considering both aerodynamic efficiency and noise was formulated, implemented, and tested. The methodology optimizes the fan geometry to maximize the volumetric flow rate and minimize noise. The fan design is complemented by the design of the optimum inlet duct geometry to increase the volumetric flow rate and minimize BL thickness for low noise generation. Good agreement with experimental results validates the design process. The present study also incorporates multi-element airfoils to further increase the aerodynamic characteristics of the fan blades. A direct comparison of fans designed with single and multi-element airfoils has shown that fans designed with multi-element airfoils aerodynamically outperform single element airfoil fans.
Simons, Martin W. „The prediction of ventilation effectiveness parameters for design studies“. Thesis, Coventry University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323519.
Der volle Inhalt der QuelleDuckworth, Ian J. „The analysis, design and operation of auxilary ventilation systems“. Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.268427.
Der volle Inhalt der QuelleChiu, Yin-Hao. „Development of unsteady design procedures for natural ventilation stacks“. Thesis, University of Nottingham, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.410175.
Der volle Inhalt der QuelleBücher zum Thema "Ventilation design"
Natural ventilation of buildings: Theory, measurement and design. Wiley: Hoboken, 2012.
Den vollen Inhalt der Quelle findenJohn, Bower. Understanding ventilation: How to design, select, and install residential ventilation systems. Bloomington, IN: Healthy House Institute, 1995.
Den vollen Inhalt der Quelle findenChen, Qingyan. System performance evaluation and design guidelines for displacement ventilation. Atlanta, Ga: American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc., 2003.
Den vollen Inhalt der Quelle findenRosaler, Robert C., und Nils R. Grimm. Handbook of HVAC design. New York: McGraw-Hill, 1990.
Den vollen Inhalt der Quelle findenParsloe, C. J. Commissioning of pipework systems: Design considerations. Bracknell: Building Services Research and Information Association, 1996.
Den vollen Inhalt der Quelle findenCouncil, Sports. Sports halls: Heating and ventilation. London: Sports Council, 1994.
Den vollen Inhalt der Quelle findenGoodfellow, Howard D. Advanced design of ventilation systems for contaminant control. Amsterdam: Elsevier, 1985.
Den vollen Inhalt der Quelle findenGoodfellow, Howard D. Advanced design of ventilation systems for contaminant control. Amsterdam: Elsevier, 1985.
Den vollen Inhalt der Quelle findenPanziera, Edoardo. Axiomatic design of a new automotive ventilation outlet. Ottawa: National Library of Canada, 1994.
Den vollen Inhalt der Quelle findenRowe, William H. HVAC: Design criteria, options, selection. 2. Aufl. Kingston, MA: R.S. Means Co., 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ventilation design"
Wallace, K. G., und P. Labrecque. „Optimizing ventilation design through discrete event equipment simulation“. In Mine Ventilation, 531–37. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476-54.
Der volle Inhalt der QuelleLi, Angui, und Risto Kosonen. „Design of Kitchen Ventilation“. In Kitchen Pollutants Control and Ventilation, 237–52. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6496-9_6.
Der volle Inhalt der QuelleNag, Pranab Kumar. „Ventilation in Office Buildings“. In Design Science and Innovation, 341–67. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2577-9_12.
Der volle Inhalt der QuelleKuyuk, A. F., S. A. Ghoreishi-Madiseh und A. P. Sasmito. „Design of mine bulk air cooling systems: Numerical, empirical and experimental validation“. In Mine Ventilation, 168–76. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476-17.
Der volle Inhalt der QuelleSrebric, Jelena. „Ventilation performance prediction“. In Building Performance Simulation for Design and Operation, 76–116. Second edition. | Abingdon, Oxon ; New York, NY : Routledge, 2019.: Routledge, 2019. http://dx.doi.org/10.1201/9780429402296-3.
Der volle Inhalt der QuelleTymkow, Paul, Savvas Tassou, Maria Kolokotroni und Hussam Jouhara. „Energy-efficient ventilation“. In Building Services Design for Energy-Efficient Buildings, 133–57. Second edition. | New York : Routledge, 2020.: Routledge, 2020. http://dx.doi.org/10.1201/9781351261166-7.
Der volle Inhalt der QuelleVershenya, Anastasiya, Umesh Shah, Stephan Broek, Tom Plikas, Jennifer Woloshyn und Andre Felipe Schneider. „Modern Design of Potroom Ventilation“. In Light Metals 2011, 531–35. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118061992.ch94.
Der volle Inhalt der QuelleVershenya, Anastasiya, Umesh Shah, Stephan Broek, Tom Plikas, Jennifer Woloshyn und Andre Felipe Schneider. „Modern Design of Potroom Ventilation“. In Light Metals 2011, 531–35. Cham: Springer International Publishing, 2011. http://dx.doi.org/10.1007/978-3-319-48160-9_94.
Der volle Inhalt der QuelleEtheridge, David. „Design Procedures for Natural Ventilation“. In Advanced Environmental Wind Engineering, 1–24. Tokyo: Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-55912-2_1.
Der volle Inhalt der QuelleNoll, J. D., W. R. Reed*, J. D. Potts und M. R. Shahan. „Design and characterization of canopy air curtain for protecting against diesel particulate matter exposures in underground mines“. In Mine Ventilation, 444–54. London: CRC Press, 2021. http://dx.doi.org/10.1201/9781003188476-46.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ventilation design"
Singru, Pravin, Bhargav Mistry, Rachna Shetty und Satish Deopujari. „Design of MEMS Based Piezo-Resistive Sensor for Measuring Pressure in Endo-Tracheal Tube“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50838.
Der volle Inhalt der QuelleWark, Christopher. „Natural Ventilation Design Using CFD“. In ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36199.
Der volle Inhalt der QuelleSitan Zhu. „Architectural design on natural ventilation“. In 2011 International Conference on Multimedia Technology (ICMT). IEEE, 2011. http://dx.doi.org/10.1109/icmt.2011.6003153.
Der volle Inhalt der Quelle„Demand-Controlled Ventilation Through a Decentralized Mechanical Ventilation Unit for Office Buildings“. In 2018 Symposium on Simulation for Architecture and Urban Design. Society for Modeling and Simulation International (SCS), 2018. http://dx.doi.org/10.22360/simaud.2018.simaud.012.
Der volle Inhalt der QuelleSe, Camby M. K., Richard K. K. Yuen, Sherman C. P. Cheung, Jiyuan Tu, Jane W. Z. Lu, Andrew Y. T. Leung, Vai Pan Iu und Kai Meng Mok. „Optimization on Emergency Longitudinal Ventilation Design“. In PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MECHANICS AND THE 12TH INTERNATIONAL CONFERENCE ON THE ENHANCEMENT AND PROMOTION OF COMPUTATIONAL METHODS IN ENGINEERING AND SCIENCE. AIP, 2010. http://dx.doi.org/10.1063/1.3452283.
Der volle Inhalt der QuelleColino, Mark P., und Elena B. Rosenstein. „A New Advance in Tunnel Ventilation Design Planning“. In 2017 Joint Rail Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/jrc2017-2203.
Der volle Inhalt der QuelleTroutman, Kenneth R. „Ventilation system design for industrial laser operation“. In ILSC® ‘90: Proceedings of the International Laser Safety Conference. Laser Institute of America, 1990. http://dx.doi.org/10.2351/1.5056032.
Der volle Inhalt der QuelleHuang, Min, und Bing-yu Pan. „Research of Ventilation Design for Highway Tunnel“. In 2011 International Conference on Management and Service Science (MASS 2011). IEEE, 2011. http://dx.doi.org/10.1109/icmss.2011.5998165.
Der volle Inhalt der QuelleRollins, M. „72. Good Examples of Bad Ventilation Design“. In AIHce 2006. AIHA, 2006. http://dx.doi.org/10.3320/1.2759072.
Der volle Inhalt der QuelleJinsheng Guo und Jing Li. „Passive solar house design of summer ventilation“. In 3rd International Conference on Contemporary Problems in Architecture and Construction. IET, 2011. http://dx.doi.org/10.1049/cp.2011.1252.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ventilation design"
MCGREW, D. L. Project Design Concept Primary Ventilation System. Office of Scientific and Technical Information (OSTI), Oktober 2000. http://dx.doi.org/10.2172/805372.
Der volle Inhalt der QuelleA.T. Watkins. Design Feature 7: Continuous Preclosure Ventilation. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/759853.
Der volle Inhalt der QuelleDols, W. Stuart, und Steven J. Emmerich. LoopDA - natural ventilation design and analysis software. Gaithersburg, MD: National Institute of Standards and Technology, 2003. http://dx.doi.org/10.6028/nist.ir.6967.
Der volle Inhalt der QuelleSlagley, Jeremy M. Proposed Additions to Ventilation Duct-Design Procedures. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426443.
Der volle Inhalt der QuelleLogan, R. C. Design Alternative Evaluation No. 3: Post-Closure Ventilation. Office of Scientific and Technical Information (OSTI), Juni 1999. http://dx.doi.org/10.2172/762897.
Der volle Inhalt der QuelleGoolsby, G. K. Position paper -- Tank ventilation system design air flow rates. Office of Scientific and Technical Information (OSTI), Januar 1995. http://dx.doi.org/10.2172/10117825.
Der volle Inhalt der QuelleEmmerich, Steven J., W. Stuart Dols und James W. Axley. Natural ventilation review and plan for design and analysis tools. Gaithersburg, MD: National Institute of Standards and Technology, 2001. http://dx.doi.org/10.6028/nist.ir.6781.
Der volle Inhalt der QuelleWillingham, W. E. ,. Fluor Daniel Hanford. Double shell tank primary ventilation exhaust flow monitor system design description. Office of Scientific and Technical Information (OSTI), März 1997. http://dx.doi.org/10.2172/325637.
Der volle Inhalt der QuelleRUTHERFORD, J. Design Analysis Report for 244-AR Interim Stabilization Exhaust Ventilation Ducting. Office of Scientific and Technical Information (OSTI), November 2002. http://dx.doi.org/10.2172/808406.
Der volle Inhalt der QuelleRoege, P. E. Functional design criteria, Project W-059, B Plant Canyon ventilation upgrade. Office of Scientific and Technical Information (OSTI), März 1995. http://dx.doi.org/10.2172/10127804.
Der volle Inhalt der Quelle