Auswahl der wissenschaftlichen Literatur zum Thema „Velocity“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Velocity" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Velocity"

1

García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas und G. Gregory Haff. „Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity“. Journal of Strength and Conditioning Research 32, Nr. 5 (Mai 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng und In Seong Park. „표면유속과 평균유속의 관계 고찰“. Crisis and Emergency Management: Theory and Praxis 19, Nr. 1 (30.01.2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.

Der volle Inhalt der Quelle
Annotation:
Surface velocity measurement using electromagnetic waves is common in flood season discharge surveys in Korea. In order to expand the relatively safe non-contact discharge survey, this study investigated the reliability of the coefficient that converts surface velocity to mean velocity in rivers and waterways. Surface and mean velocity were investigated for agricultural reservoir spillways, gravel rivers, and irrigation canals, and the volumetric capacity of agricultural reservoirs was confirmed. As a result of the investigation, the mean velocity conversion coefficients according to the riverbed slope or riverbed material were very diverse, such as 0.61, 0.90, 0.52, and 0.88. The above result makes it clear that each investigation point has a unique conversion coefficient according to the characteristics of the bed material. In other words, accurate discharge investigation is possible by knowing the unique conversion factor to each point. The importance of water management due to climate change is increasing day by day. Accurate flow rate for rivers and waterways will be used as an essential factor for quantitative water resource management in the future.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cojanovic, Milos. „Stellar Distance and Velocity (II)“. International Journal of Science and Research (IJSR) 8, Nr. 9 (05.09.2019): 275–82. http://dx.doi.org/10.21275/art2020906.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Byun, Joongmoo. „Automatic Velocity Analysis Considering Anisotropy“. Journal of the Korean Society of Mineral and Energy Resources Engineers 50, Nr. 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Turner, Marie. „Velocity“. Fourth Genre 25, Nr. 2 (01.08.2023): 38–52. http://dx.doi.org/10.14321/fourthgenre.25.2.0038.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Hongsong, Liang Wang, Jiashi Feng und Daquan Zhou. „Velocity-to-velocity human motion forecasting“. Pattern Recognition 124 (April 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Rowell, A. L., C. S. Williams und D. W. Hill. „CRITICAL VELOCITY IS MINIMAL VELOCITY 101“. Medicine &amp Science in Sports &amp Exercise 28, Supplement (Mai 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Lazarus, Max J. „Group Velocity Is Not Signal Velocity“. Physics Today 56, Nr. 8 (August 2003): 14. http://dx.doi.org/10.1063/1.1611340.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

SAWADA, SHIRO. „OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY“. International Journal of Modern Physics C 17, Nr. 01 (Januar 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.

Der volle Inhalt der Quelle
Annotation:
The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Haitjema, Henk M., und Mary P. Anderson. „Darcy Velocity Is Not a Velocity“. Groundwater 54, Nr. 1 (30.11.2015): 1. http://dx.doi.org/10.1111/gwat.12386.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Velocity"

1

Makin, Alexis David James. „Velocity memory“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/velocity-memory(c5c1c28d-0a23-44a5-93bc-21f993d2e7ad).html.

Der volle Inhalt der Quelle
Annotation:
It is known that primates are sensitive to the velocity of moving objects. We can also remember velocity information after moving objects disappear. This cognitive faculty has been investigated before, however, the literature on velocity memory to date has been fragmented. For example, velocity memory has been disparately described as a system that controls eye movements and delayed discrimination. Furthermore, velocity memory may have a role in motion extrapolation, i.e. the ability to judge the position of a moving target after it becomes occluded. This thesis provides a unifying account of velocity memory, and uses electroencephalography (EEG) to explore its neural basis. In Chapter 2, the relationship between oculomotor control and motion extrapolation was investigated. Two forms of motion extrapolation task were presented. In the first, participants observed a moving target disappear then reappear further along its path. Reappearance could be at the correct time, too early or too late. Participants discriminated reappearance error with a two-alternative forced choice button press. In the second task, participants saw identical targets travel behind a visible occluder, and they attempted to press a button at the exact time that it reached the other side. Tasks were completed under fixation and free viewing conditions. The accuracy of participant's judgments was reduced by fixation in both tasks. In addition, eye movements were systematically related to behavioural responses, and small eye movements during fixation were affected by occluded motion. These three results imply that common velocity memory and pre-motor systems mediate eye movements and motion extrapolation. In Chapter 3, different types of velocity representation were explored. Another motion extrapolation task was presented, and targets of a particular colour were associated with fast or slow motion. On identical-velocity probe trials, colour still influenced response times. This indicates that long-term colour-velocity associations influence motion extrapolation. In Chapter 4, interference between subsequently encoded velocities was explored. There was robust interference between motion extrapolation and delayed discrimination tasks, suggesting that common processes are involved in both. In Chapter 5, EEG was used to investigate when memory-guided tracking begins during motion extrapolation. This study compared conditions where participants covertly tracked visible and occluded targets. It was found that a specific event related potential (ERP) appeared around 200 ms post occlusion, irrespective of target location or velocity. This component could delineate the onset of memory guided tracking during occlusion. Finally, Chapter 6 presents evidence that a change in alpha band activity is associated with information processing during motion extrapolation tasks. In light of these results, it is concluded that a common velocity memory system is involved a variety of tasks. In the general discussion (Chapter 7), a new account of velocity memory is proposed. It is suggested that a velocity memory reflects persistent synchronization across several velocity sensitive neural populations after stimulus offset. This distributed network is involved in sensory-motor integration, and can remain active without visual input. Theoretical work on eye movements, delayed discrimination and motion extrapolation could benefit from this account of velocity memory.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Seligman, Joshua R. „Power development through low velocity isotonic, or combined low velocity isotonic-high velocity isokinetic training /“. Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7046.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zhu, Weijia. „A new instrumentation for particle velocity and velocity related measurements under water /“. View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/fullcit/3239913.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Beg, Sarena. „The determinants of velocity“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20781.pdf.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Saeed, Khizer. „Laminar burning velocity measurements“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270733.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kopp, Robert William. „Determination of the velocity“. Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25837.

Der volle Inhalt der Quelle
Annotation:
Hypervelocity flows for velocities is excess of 1.4 km/sec (Mach 5) require very high stagnation temperature to avoid liquefaction. The arc heater wind tunnel has been designed to provide such flows. The electric-are driven wind tunnel can develop stagnation temperatures up to 13,000 K which will produce hypervelocity flows up to 7 km/sec (earth orbital speed). The nature of the flow, however, is such that the high temperature source flow may cause severe gradients at the nozzle exit. In order to perform aero-thermodynamic tests the characterization of the flow in the test section is required. This paper experimentally determines the stream profiles for an arcjet wind tunnel conical nozzle directly from calorimetry and pitot probe surveys. Keywords: Arcjet flow; Hypervelocity flow; High enthalpy flow; Flow characteristics; Characteristic profile of the flow;
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Teng, Xiaoqing. „High velocity impact fracture“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32118.

Der volle Inhalt der Quelle
Annotation:
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 2005.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 315-330).
An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural components under high velocity impact are investigated numerically and theoretically. Attention is focused on the formation and propagation of through-thickness cracks, which is difficult to experimentally track down using currently available instruments. Studied are three typical and challenging types of impact problems: (i) rigid mass-to beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with the newly developed Bao-Wierzbicki's (BW) fracture criterion, a number of distinct failure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam impact, confined fracture, petalling, and shear cracking in the Taylor test, are successfully recreated for the first time in the open literature. All of the present predictions are in qualitative agreement with experimental observations.
(cont.) This investigation convincingly demonstrates the applicability of the BW's fracture criterion to high velocity impact problems and at the same time provides an insight into deficiencies of existing fracture loci. Besides void growth, the adiabatic shear banding is another basic failure mechanism often encountered in high velocity impact. This failure mechanism and subsequent fracture is studied through numerical simulation of a recently conducted compression test on a hat specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands is successfully captured. The relation between hot spots and crack formation is revealed. The numerical predictions correlate well with experimental results. An explicit expression controlling through-thickness crack growth is proposed and verified by performing an extensive parametric study in a wide range of input variables. Using this expression, a two-stage analytical model is formulated for shear plugging of a beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are compared with experimental results published in the literature showing very good agreement.
(cont.) Three theoretical models for rigid mass-to-beam impact, the single, double, and multiple impact of beam-to-beam are derived from the momentum conservation principle. The obtained closed-form solutions, which are applicable to the axial stretching dominated case, are validated by finite element analysis.
by Xiaoqing Teng.
Ph.D.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Johansson, Torneus Daniel, und Alexander Kotoglou. „Velocity of plasma flow“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199363.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Stober, Gunter, und Christoph Jacobi. „Meteor head velocity determination“. Universität Leipzig, 2007. https://ul.qucosa.de/id/qucosa%3A15571.

Der volle Inhalt der Quelle
Annotation:
Meteore, die in die Atmosphäre eindringen, bilden bei hohen Oberflächentemperaturen, die durch Kollisionen mit der umgebenden Luft hervorgerufen werden, einen mehrere Kilometer langen Plasmaschweif aus. An diesem Schweif werden ausgesandte Radarwellen reflektiert und zurückgestreut. Dies führt zu einem charakteristischen Schwingungsverhalten, auch Fresnel Zonen genannt, am Empfänger. Die Überlagerung dieser Wellen ist verantwortlich für die typische Signalform eines Meteors, mit dem abrupten Anstieg und dem exponentiellen Abfall für \'underdense\' Meteore. Mit Hilfe einer Simulation wird der theoretische Zusammenhang zwischen Geschwindigkeit und Signalverlauf demonstriert. Des weiteren wird gezeigt, das die Methode von Baggaley et al. [1997] zur Bestimmung von Meteoreintrittsgeschwindigkeiten auch auf ein Radarinterferometer (SKiYMET) anwendbar ist. Abschliessend werden die gewonnen Ergebnisse mit einem anderen Verfahren sowie der Literatur verglichen.
Meteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Stober, Gunter, und Christoph Jacobi. „Meteor head velocity determination“. Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-223206.

Der volle Inhalt der Quelle
Annotation:
Meteore, die in die Atmosphäre eindringen, bilden bei hohen Oberflächentemperaturen, die durch Kollisionen mit der umgebenden Luft hervorgerufen werden, einen mehrere Kilometer langen Plasmaschweif aus. An diesem Schweif werden ausgesandte Radarwellen reflektiert und zurückgestreut. Dies führt zu einem charakteristischen Schwingungsverhalten, auch Fresnel Zonen genannt, am Empfänger. Die Überlagerung dieser Wellen ist verantwortlich für die typische Signalform eines Meteors, mit dem abrupten Anstieg und dem exponentiellen Abfall für \"underdense\" Meteore. Mit Hilfe einer Simulation wird der theoretische Zusammenhang zwischen Geschwindigkeit und Signalverlauf demonstriert. Des weiteren wird gezeigt, das die Methode von Baggaley et al. [1997] zur Bestimmung von Meteoreintrittsgeschwindigkeiten auch auf ein Radarinterferometer (SKiYMET) anwendbar ist. Abschliessend werden die gewonnen Ergebnisse mit einem anderen Verfahren sowie der Literatur verglichen
Meteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Velocity"

1

Koontz, Dean R. Velocity. New York: Bantam Books, 2005.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Krygowski, Nancy. Velocity. Pittsburgh, PA: University of Pittsburgh Press, 2008.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

McCloy, Kristin. Velocity. New York: Random House, 1988.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Krygowski, Nancy. Velocity. Pittsburgh, Pa: University of Pittsburgh Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Koontz, Dean R. Velocity. London: Harper, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Environmental Technology Laboratory (Environmental Research Laboratories), Hrsg. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Hill, Reginald J. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Environmental Technology Laboratory (Environmental Research Laboratories), Hrsg. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Boyd, Blanche M. Terminal velocity. New York: Alfred A. Knopf, 1997.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Yeh, Cindy. Urban Velocity. New York, NY: the artist, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Velocity"

1

Roberson, Robert E., und Richard Schwertassek. „Velocity“. In Dynamics of Multibody Systems, 79–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-86464-3_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Gooch, Jan W. „Velocity“. In Encyclopedic Dictionary of Polymers, 790. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12467.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Weik, Martin H. „velocity“. In Computer Science and Communications Dictionary, 1885. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20712.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dalton, Jeff. „Velocity“. In Great Big Agile, 271–72. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4206-3_71.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Watkins, William H. „Velocity“. In Loudspeaker Physics and Forced Vibration, 67–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91634-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kuttner, Thomas, und Armin Rohnen. „Velocity Transducer (Vibration Velocity Transducer)“. In Practice of Vibration Measurement, 101–9. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38463-0_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Elise Albert, C., und Laura Danly. „Interemdiate-velocity Clouds“. In High-Velocity Clouds, 73–100. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Wakker, Bart P., Klaas S. de Boer und Hugo van Woerden. „History of HVC research — an Overview“. In High-Velocity Clouds, 1–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Van Woerden, Hugo, und Bart P. Wakker. „Distances and Metallicities of HVCS“. In High-Velocity Clouds, 195–226. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

De Boer, Klaas S. „The Hot Halo“. In High-Velocity Clouds, 227–50. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Velocity"

1

Butler, John L., Stephen C. Butler, Donald P. Massa und George H. Cavanagh. „Metallic glass velocity sensor“. In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50333.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Fomel, Sergey. „Migration velocity analysis by velocity continuation“. In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816277.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Gentilman, Richard L., Leslie J. Bowen, Daniel F. Fiore, Hong T. Pham und William J. Serwatka. „Injection molded 1–3 piezocomposite velocity sensors“. In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50346.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

-G. Ferber, R. „Velocity independent time migration and velocity analysis“. In 54th EAEG Meeting. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609.201410614.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Nemeth, Tamas. „Velocity estimation using tomographic migration velocity analysis“. In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887304.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ferreira, Rogelma M. S., und Fernando A. Oliveira. „Velocity-velocity correlation function for anomalous diffusion“. In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569535.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ko, Sung H. „Performance of velocity sensor for flexural wave reduction“. In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50352.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Bulik, Tomasz, und Donald Q. Lamb. „Gamma-ray bursts from high velocity neutron stars“. In High velocity neutron stars and gamma−ray bursts. AIP, 1996. http://dx.doi.org/10.1063/1.50276.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Sherwood, John W. C. „Velocity estimation“. In SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892367.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sky, Hellen, John McCormick und Garth Paine. „Escape velocity“. In ACM SIGGRAPH 98 Electronic art and animation catalog. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281388.281496.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Velocity"

1

Kramer, Mitchell. divine’s Velocity Marketing. Boston, MA: Patricia Seybold Group, Februar 2003. http://dx.doi.org/10.1571/pr2-21-03cc.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Peterfreund, N. The velocity snake: Deformable contour for tracking in spatio-velocity space. Office of Scientific and Technical Information (OSTI), Juni 1997. http://dx.doi.org/10.2172/631265.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Liu, Zhenyue, und Norman Bleistein. Velocity Analysis by Perturbation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1993. http://dx.doi.org/10.21236/ada272537.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Liu, Zhenyue, und Norman Bleistein. Velocity Analysis by Inversion. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada241003.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Toor, A., T. Donich und P. Carter. High velocity impact experiment (HVIE). Office of Scientific and Technical Information (OSTI), Februar 1998. http://dx.doi.org/10.2172/303456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Meidinger, Brian. BENCAP, LLC: CAPSULE VELOCITY TEST. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/925758.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Symes, William W. Velocity Inversion by Coherency Optimization. Fort Belvoir, VA: Defense Technical Information Center, Mai 1988. http://dx.doi.org/10.21236/ada455248.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Weyburne, David. Similarity of the Velocity Profile. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada609962.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Johns, William E. Acoustic Velocity Profiling in SYNOP. Fort Belvoir, VA: Defense Technical Information Center, Februar 1996. http://dx.doi.org/10.21236/ada306621.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lundberg, Patrik. Transition Velocity Experiments on Ceramics. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada420132.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie