Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Velocity“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Velocity" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Velocity"
García-Ramos, Amador, Francisco L. Pestaña-Melero, Alejandro Pérez-Castilla, Francisco J. Rojas und G. Gregory Haff. „Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity“. Journal of Strength and Conditioning Research 32, Nr. 5 (Mai 2018): 1273–79. http://dx.doi.org/10.1519/jsc.0000000000001998.
Der volle Inhalt der QuelleLee, Hyun Seok, Ki Won Lee, Hyung Jin Shin, Seung Jin Maeng und In Seong Park. „표면유속과 평균유속의 관계 고찰“. Crisis and Emergency Management: Theory and Praxis 19, Nr. 1 (30.01.2023): 111–20. http://dx.doi.org/10.14251/crisisonomy.2023.19.1.111.
Der volle Inhalt der QuelleCojanovic, Milos. „Stellar Distance and Velocity (II)“. International Journal of Science and Research (IJSR) 8, Nr. 9 (05.09.2019): 275–82. http://dx.doi.org/10.21275/art2020906.
Der volle Inhalt der QuelleByun, Joongmoo. „Automatic Velocity Analysis Considering Anisotropy“. Journal of the Korean Society of Mineral and Energy Resources Engineers 50, Nr. 1 (2013): 11. http://dx.doi.org/10.12972/ksmer.2013.50.1.011.
Der volle Inhalt der QuelleTurner, Marie. „Velocity“. Fourth Genre 25, Nr. 2 (01.08.2023): 38–52. http://dx.doi.org/10.14321/fourthgenre.25.2.0038.
Der volle Inhalt der QuelleWang, Hongsong, Liang Wang, Jiashi Feng und Daquan Zhou. „Velocity-to-velocity human motion forecasting“. Pattern Recognition 124 (April 2022): 108424. http://dx.doi.org/10.1016/j.patcog.2021.108424.
Der volle Inhalt der QuelleRowell, A. L., C. S. Williams und D. W. Hill. „CRITICAL VELOCITY IS MINIMAL VELOCITY 101“. Medicine & Science in Sports & Exercise 28, Supplement (Mai 1996): 17. http://dx.doi.org/10.1097/00005768-199605001-00101.
Der volle Inhalt der QuelleLazarus, Max J. „Group Velocity Is Not Signal Velocity“. Physics Today 56, Nr. 8 (August 2003): 14. http://dx.doi.org/10.1063/1.1611340.
Der volle Inhalt der QuelleSAWADA, SHIRO. „OPTIMAL VELOCITY MODEL WITH RELATIVE VELOCITY“. International Journal of Modern Physics C 17, Nr. 01 (Januar 2006): 65–73. http://dx.doi.org/10.1142/s0129183106009084.
Der volle Inhalt der QuelleHaitjema, Henk M., und Mary P. Anderson. „Darcy Velocity Is Not a Velocity“. Groundwater 54, Nr. 1 (30.11.2015): 1. http://dx.doi.org/10.1111/gwat.12386.
Der volle Inhalt der QuelleDissertationen zum Thema "Velocity"
Makin, Alexis David James. „Velocity memory“. Thesis, University of Manchester, 2011. https://www.research.manchester.ac.uk/portal/en/theses/velocity-memory(c5c1c28d-0a23-44a5-93bc-21f993d2e7ad).html.
Der volle Inhalt der QuelleSeligman, Joshua R. „Power development through low velocity isotonic, or combined low velocity isotonic-high velocity isokinetic training /“. Thesis, University of Hawaii at Manoa, 2003. http://hdl.handle.net/10125/7046.
Der volle Inhalt der QuelleZhu, Weijia. „A new instrumentation for particle velocity and velocity related measurements under water /“. View online ; access limited to URI, 2006. http://0-wwwlib.umi.com.helin.uri.edu/dissertations/fullcit/3239913.
Der volle Inhalt der QuelleBeg, Sarena. „The determinants of velocity“. Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp04/mq20781.pdf.
Der volle Inhalt der QuelleSaeed, Khizer. „Laminar burning velocity measurements“. Thesis, University of Oxford, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270733.
Der volle Inhalt der QuelleKopp, Robert William. „Determination of the velocity“. Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/25837.
Der volle Inhalt der QuelleTeng, Xiaoqing. „High velocity impact fracture“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32118.
Der volle Inhalt der QuelleThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 315-330).
An in-depth understanding of dynamic ductile fracture is one of the most important steps to improve the survivability of critical structures such as the lost Twin Towers. In the present thesis, the macroscopic fracture modes and the fracture mechanisms of ductile structural components under high velocity impact are investigated numerically and theoretically. Attention is focused on the formation and propagation of through-thickness cracks, which is difficult to experimentally track down using currently available instruments. Studied are three typical and challenging types of impact problems: (i) rigid mass-to beam impact, (ii) the Taylor test, and (iii) dynamic compression tests on an axisymmetric hat specimen. Using an existing finite element code (ABAQUS/Explicit) implemented with the newly developed Bao-Wierzbicki's (BW) fracture criterion, a number of distinct failure modes including fragmentation, shear plugging, tensile tearing in rigid mass-to-beam impact, confined fracture, petalling, and shear cracking in the Taylor test, are successfully recreated for the first time in the open literature. All of the present predictions are in qualitative agreement with experimental observations.
(cont.) This investigation convincingly demonstrates the applicability of the BW's fracture criterion to high velocity impact problems and at the same time provides an insight into deficiencies of existing fracture loci. Besides void growth, the adiabatic shear banding is another basic failure mechanism often encountered in high velocity impact. This failure mechanism and subsequent fracture is studied through numerical simulation of a recently conducted compression test on a hat specimen. The periodical occurrence of hot spots in the propagating adiabatic shear bands is successfully captured. The relation between hot spots and crack formation is revealed. The numerical predictions correlate well with experimental results. An explicit expression controlling through-thickness crack growth is proposed and verified by performing an extensive parametric study in a wide range of input variables. Using this expression, a two-stage analytical model is formulated for shear plugging of a beam/plate impacted by a flat-nosed projectile. Obtained theoretical solutions are compared with experimental results published in the literature showing very good agreement.
(cont.) Three theoretical models for rigid mass-to-beam impact, the single, double, and multiple impact of beam-to-beam are derived from the momentum conservation principle. The obtained closed-form solutions, which are applicable to the axial stretching dominated case, are validated by finite element analysis.
by Xiaoqing Teng.
Ph.D.
Johansson, Torneus Daniel, und Alexander Kotoglou. „Velocity of plasma flow“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199363.
Der volle Inhalt der QuelleStober, Gunter, und Christoph Jacobi. „Meteor head velocity determination“. Universität Leipzig, 2007. https://ul.qucosa.de/id/qucosa%3A15571.
Der volle Inhalt der QuelleMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments.
Stober, Gunter, und Christoph Jacobi. „Meteor head velocity determination“. Universitätsbibliothek Leipzig, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-223206.
Der volle Inhalt der QuelleMeteors, penetrating the earths atmosphere, creating at high surface temperatures, which are caused by collisions with the surrounding air molecules, a several kilometer long plasma trail. The ionized plasma backscatters transmitted radar waves. This leads to characteristic oscillations, called Fresnel zones, at the receiver. The interference of these waves entails the typical signal shape of a underdense meteor with the sudden rise of the signal and the exponential decay. By means of a simulation the theoretical connection between velocity and signal shape is demonstrated. Furthermore it is presented, that the method from Baggaley et al. [1997] for determination of meteor entry velocities is applicable for a radar interferometer (SKiYMET). Finally the results are compared to other radar methods on similar equipment and to other experiments
Bücher zum Thema "Velocity"
Koontz, Dean R. Velocity. New York: Bantam Books, 2005.
Den vollen Inhalt der Quelle findenKrygowski, Nancy. Velocity. Pittsburgh, PA: University of Pittsburgh Press, 2008.
Den vollen Inhalt der Quelle findenMcCloy, Kristin. Velocity. New York: Random House, 1988.
Den vollen Inhalt der Quelle findenKrygowski, Nancy. Velocity. Pittsburgh, Pa: University of Pittsburgh Press, 2007.
Den vollen Inhalt der Quelle findenKoontz, Dean R. Velocity. London: Harper, 2011.
Den vollen Inhalt der Quelle findenEnvironmental Technology Laboratory (Environmental Research Laboratories), Hrsg. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Den vollen Inhalt der Quelle findenHill, Reginald J. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Den vollen Inhalt der Quelle findenEnvironmental Technology Laboratory (Environmental Research Laboratories), Hrsg. Supplement regarding pressure-velocity-velocity statistics. Boulder, Colo: U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories, Environmental Technology Laboratory, 1996.
Den vollen Inhalt der Quelle findenBoyd, Blanche M. Terminal velocity. New York: Alfred A. Knopf, 1997.
Den vollen Inhalt der Quelle findenYeh, Cindy. Urban Velocity. New York, NY: the artist, 2015.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Velocity"
Roberson, Robert E., und Richard Schwertassek. „Velocity“. In Dynamics of Multibody Systems, 79–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-86464-3_4.
Der volle Inhalt der QuelleGooch, Jan W. „Velocity“. In Encyclopedic Dictionary of Polymers, 790. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12467.
Der volle Inhalt der QuelleWeik, Martin H. „velocity“. In Computer Science and Communications Dictionary, 1885. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20712.
Der volle Inhalt der QuelleDalton, Jeff. „Velocity“. In Great Big Agile, 271–72. Berkeley, CA: Apress, 2018. http://dx.doi.org/10.1007/978-1-4842-4206-3_71.
Der volle Inhalt der QuelleWatkins, William H. „Velocity“. In Loudspeaker Physics and Forced Vibration, 67–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-91634-3_11.
Der volle Inhalt der QuelleKuttner, Thomas, und Armin Rohnen. „Velocity Transducer (Vibration Velocity Transducer)“. In Practice of Vibration Measurement, 101–9. Wiesbaden: Springer Fachmedien Wiesbaden, 2023. http://dx.doi.org/10.1007/978-3-658-38463-0_7.
Der volle Inhalt der QuelleElise Albert, C., und Laura Danly. „Interemdiate-velocity Clouds“. In High-Velocity Clouds, 73–100. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_4.
Der volle Inhalt der QuelleWakker, Bart P., Klaas S. de Boer und Hugo van Woerden. „History of HVC research — an Overview“. In High-Velocity Clouds, 1–24. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_1.
Der volle Inhalt der QuelleVan Woerden, Hugo, und Bart P. Wakker. „Distances and Metallicities of HVCS“. In High-Velocity Clouds, 195–226. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_10.
Der volle Inhalt der QuelleDe Boer, Klaas S. „The Hot Halo“. In High-Velocity Clouds, 227–50. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-2579-3_11.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Velocity"
Butler, John L., Stephen C. Butler, Donald P. Massa und George H. Cavanagh. „Metallic glass velocity sensor“. In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50333.
Der volle Inhalt der QuelleFomel, Sergey. „Migration velocity analysis by velocity continuation“. In SEG Technical Program Expanded Abstracts 2001. Society of Exploration Geophysicists, 2001. http://dx.doi.org/10.1190/1.1816277.
Der volle Inhalt der QuelleGentilman, Richard L., Leslie J. Bowen, Daniel F. Fiore, Hong T. Pham und William J. Serwatka. „Injection molded 1–3 piezocomposite velocity sensors“. In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50346.
Der volle Inhalt der Quelle-G. Ferber, R. „Velocity independent time migration and velocity analysis“. In 54th EAEG Meeting. European Association of Geoscientists & Engineers, 1992. http://dx.doi.org/10.3997/2214-4609.201410614.
Der volle Inhalt der QuelleNemeth, Tamas. „Velocity estimation using tomographic migration velocity analysis“. In SEG Technical Program Expanded Abstracts 1995. Society of Exploration Geophysicists, 1995. http://dx.doi.org/10.1190/1.1887304.
Der volle Inhalt der QuelleFerreira, Rogelma M. S., und Fernando A. Oliveira. „Velocity-velocity correlation function for anomalous diffusion“. In NONEQUILIBRIUM STATISTICAL PHYSICS TODAY: Proceedings of the 11th Granada Seminar on Computational and Statistical Physics. AIP, 2011. http://dx.doi.org/10.1063/1.3569535.
Der volle Inhalt der QuelleKo, Sung H. „Performance of velocity sensor for flexural wave reduction“. In Acoustic particle velocity sensors: Design, performance, and applications. AIP, 1996. http://dx.doi.org/10.1063/1.50352.
Der volle Inhalt der QuelleBulik, Tomasz, und Donald Q. Lamb. „Gamma-ray bursts from high velocity neutron stars“. In High velocity neutron stars and gamma−ray bursts. AIP, 1996. http://dx.doi.org/10.1063/1.50276.
Der volle Inhalt der QuelleSherwood, John W. C. „Velocity estimation“. In SEG Technical Program Expanded Abstracts 1988. Society of Exploration Geophysicists, 1988. http://dx.doi.org/10.1190/1.1892367.
Der volle Inhalt der QuelleSky, Hellen, John McCormick und Garth Paine. „Escape velocity“. In ACM SIGGRAPH 98 Electronic art and animation catalog. New York, New York, USA: ACM Press, 1998. http://dx.doi.org/10.1145/281388.281496.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Velocity"
Kramer, Mitchell. divine’s Velocity Marketing. Boston, MA: Patricia Seybold Group, Februar 2003. http://dx.doi.org/10.1571/pr2-21-03cc.
Der volle Inhalt der QuellePeterfreund, N. The velocity snake: Deformable contour for tracking in spatio-velocity space. Office of Scientific and Technical Information (OSTI), Juni 1997. http://dx.doi.org/10.2172/631265.
Der volle Inhalt der QuelleLiu, Zhenyue, und Norman Bleistein. Velocity Analysis by Perturbation. Fort Belvoir, VA: Defense Technical Information Center, Mai 1993. http://dx.doi.org/10.21236/ada272537.
Der volle Inhalt der QuelleLiu, Zhenyue, und Norman Bleistein. Velocity Analysis by Inversion. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada241003.
Der volle Inhalt der QuelleToor, A., T. Donich und P. Carter. High velocity impact experiment (HVIE). Office of Scientific and Technical Information (OSTI), Februar 1998. http://dx.doi.org/10.2172/303456.
Der volle Inhalt der QuelleMeidinger, Brian. BENCAP, LLC: CAPSULE VELOCITY TEST. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/925758.
Der volle Inhalt der QuelleSymes, William W. Velocity Inversion by Coherency Optimization. Fort Belvoir, VA: Defense Technical Information Center, Mai 1988. http://dx.doi.org/10.21236/ada455248.
Der volle Inhalt der QuelleWeyburne, David. Similarity of the Velocity Profile. Fort Belvoir, VA: Defense Technical Information Center, Oktober 2014. http://dx.doi.org/10.21236/ada609962.
Der volle Inhalt der QuelleJohns, William E. Acoustic Velocity Profiling in SYNOP. Fort Belvoir, VA: Defense Technical Information Center, Februar 1996. http://dx.doi.org/10.21236/ada306621.
Der volle Inhalt der QuelleLundberg, Patrik. Transition Velocity Experiments on Ceramics. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada420132.
Der volle Inhalt der Quelle