Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Véhicules spatiaux – Propulsion – Performances“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Véhicules spatiaux – Propulsion – Performances" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Véhicules spatiaux – Propulsion – Performances"
-CADIOU, Anne. „La propulsion des véhicules spatiaux“. Revue de l'Electricité et de l'Electronique -, Nr. 08 (2000): 66. http://dx.doi.org/10.3845/ree.2000.083.
Der volle Inhalt der QuelleBouchard, Mathieu, Olivier Bellavance und Louis-Daniel Théroux. „Techniques avancées par courants de Foucault multi-éléments pour l’inspection de soudures orbitales“. e-journal of nondestructive testing 28, Nr. 9 (September 2023). http://dx.doi.org/10.58286/28529.
Der volle Inhalt der QuelleDissertationen zum Thema "Véhicules spatiaux – Propulsion – Performances"
Cavalere, Pierre. „Synthèse et réactivité de nouvelles azimines, précurseurs de triaziridines pour la propulsion spatiale“. Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10191.
Der volle Inhalt der QuelleSince the begining of space propulsion, launchers used low-power, polluting, and highly toxic technologies such as hydrazine and its derivatives. New, more powerful propellant mixtures have emerged. Cryogenic propellants like LOX/LH2, LOX/kerosene, or LOX/methane show significantly higher performance. Dense solid propellants also offer high thrust but cannot be reignited or throttled. This is the case with boosters (aluminum, ammonium perchlorate, and PBHT for Araine 5's EAP). The current goal is to find new propellants that possess the performance of cryogenics, the storability of hydrazines, and the density of solids. A class of new molecules offers all these advantages : High Energy Density Materials (HEDMs). These new high-value-added energetic molecules currently have theoretically calculated properties such as specific impulse and density, which are very interesting and in total technological breakthrought. They form gases with low molar weight at very high speeds through decomposition rather than combustion, aligning with the current trend of reducing costs, pollution, and toxicity, as well as the launcher’s size (Ariane Ultimate). This also allows for an increase the payload by using a smaller amount of propellant. The desired target of this thesis is triaziridine N3H3. This thesis work fits exactly within this dynamic and focuses on accessing a cyclic trinitrogenated molecules for space propulsion: triaziridine. To do this, the reactivity of azimines under photochemical conditions was studied. Initially, it was decided to build upon previous work conducted in the laboratory and to proceed with a complete optimization of the cyclization reaction to increase yields of triaziridine. Solvents, catalysts, and additives screenings were considered, and continuous flow transposition. Still aiming to obtain deprotectable triaziridines, a new one-pot method for azimine synthesis was developed, based on the electrophilic amination of functionalized hydrazine by an oxaziridine, leading to the corresponding triazane. This triazane will subsequently be oxidized by a hypervalent iodine derivative, allowing access to brand new aziminic skeletons. Finally, a theoretical DFT modeling study of the azimine photocyclization reaction was explored. This study shows the differents transition states that allow the cyclization of azimine into triaziridine. It also been initiated the development of a predictive model, which will guide the choice of cleavable substituents to introduce on the azimine to promote the photocyclization reaction
Forquet, Valérian. „Composés polyazotés dérivés d’hydrazines : synthèse, caractérisation et modélisation quantique des performances énergétiques“. Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10328/document.
Der volle Inhalt der QuelleHigh nitrogen content energetic compounds, envisioned as a first step towards High EnergyDensity Materials (HEDM) for space propulsion, were prepared from hydrazine derivatives. Indeed,the formation of nitrogen gas (N−−−N) from an N−−N bond yields a lot of energy and even morefrom an N−N bond. Hence, an amination reaction on unsymmetrical dimethylhydrazine (UDMH)yielded a 2,2-dimethyltriazanium salt, containing three consecutive single-bonded nitrogen atoms.The initial inorganic anion was then exchanged with the following nitrogen-rich anions in order toyield energetic salts: 5-aminotetrazolate, 5-nitrotetrazolate, 5,5’-azobistetrazolate, azide, nitroformateand dinitramide. For safety reasons, the ion metathesis of the azide salt was conductedby electrodialysis and the sensitivities of all compounds towards both impact and friction wereevaluated in accordance with standard procedures. Reliable heats of formation of the compoundswith the highest nitrogen content were obtained by oxygen bomb calorimetry. These values werethen computed with quantum mechanical methods and compared with known procedures reportedin the literature, whose theoretical backgrounds have been discussed. Consequently, theprocedure resulting in the best match between calculated and experimental heats of formation wasidentified. The precision of the method used herein exceeds that of recent results from renownedresearch groups in this field. Thus, the various techniques introduced during the course of thiswork will enable our laboratory to progress more efficiently in this area of research
Quinsac, Gary. „From commercials off-the-shelf to expected propulsion in nanosatellites“. Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEO004.
Der volle Inhalt der QuelleThe domain of nano/microsatellites has been irreversibly modified by the apparition of the CubeSat standard. The exponential growth of CubeSat launches during the past 20 years, combined with the growing interest of private companies and space agencies has confirmed the sustainability of a new approach to space missions: standardization, short release cycle and shared launches. This standard has paved the way to the democratization of subsystems available as "commercial off-the-shelf" (COTS). However, because of the drastic constraints imposed by the standard in terms of mass, volume and power, most CubeSats to date were launched in Low Earth Orbit (LEO). Among the limitations that this class of satellites still faces is the orbit control. It is expected to allow more flexibility to LEO missions and pave the way to interplanetary trajectories.This thesis aims to highlight the remaining discrepancies between the CubeSat philosophy and the complexity of the Attitude and Orbit Control System (AOCS), and tackle some of them. Current "commercial off-the-shelf" (COTS) approach tends to consider each subsystem individually, making it difficult to ensure performances at system level. For our concern, the distinction between the attitude control and the orbit control (ADCS/GNC) hides inherent mutual impacts. This work proposes a high-level approach based on identified representative cases, such as deorbiting from LEO, escaping Earth orbit or proximity operations. Thanks to a functional analysis, the fundamental links between the required subsystems for a successful orbital maneuver are emphasized. We show that the conventional approach tends to neglect the attitude control required to ensure the expected pointing during the maneuver, usually considered to be within the limits of the non-dedicated ADCS. Classical performance indexes for propulsion systems are proved to be deficient, for instance focusing on the propellant mass at the expense of the dry mass of the system. They also omit the effects of the power and thermal requirements in terms of added mass, which sometimes result in unrealistic solutions at the CubeSat scale.The thrusters' impact on the design of the ADCS is quantified through the development of an AOCS simulation environment. Important increases in maneuver duration and propellant consumption, even mission loss, are observed. As a results, we propose solutions to ensure the success of expected orbital maneuvers. COTS propulsion systems’ classical description is revisited with an enhanced system performance index, taking into account the multiple implications of a thruster integration
Gascon, Nicolas. „Etude de propulseurs plasmiques à effet Hall pour systèmes spatiaux : performances, propriétés des décharges et modélisation hydrodynamique“. Aix-Marseille 1, 2000. http://www.theses.fr/2000AIX11059.
Der volle Inhalt der QuelleDahbi, Mohamed. „Contribution à l'amélioration des performances des actionneurs dans un véhicule électrique“. Electronic Thesis or Diss., Amiens, 2020. http://www.theses.fr/2020AMIE0007.
Der volle Inhalt der QuelleThis thesis concerns the improvement of brushless DC motor performance, called Brushless motor (BLDC), and of an electric vehicle using this type of motor (BLDC) for its propulsion. The aim of this thesis is to provide new methods dedicated to the reduction of problems concerning this type of engine and thus increase its efficiency to achieve a lower electric vehicle energy consumption. This is done while taking into account the different parameters that come into consideration when rolling a vehicle, namely the resistive forces such as aerodynamic forces, rolling, slope, and acceleration. An experimental platform was thus implemented and on which the elaborated methods were implemented and proved after the analysis of the analytical and simulation results. These were developed on the MATLAB / Simulink environment. The proposed methods deal with problems related to current ripple, current peaks, and also the appropriate control mode for increased efficiency
Guerrini, Gilles. „Etude expérimentale des phénomènes de décharge et propagation d'ondes dans les propulseurs ioniques à dérive d'électrons en cycle fermé“. Aix-Marseille 1, 1997. http://www.theses.fr/1997AIX11021.
Der volle Inhalt der QuelleNiang, Samuel. „Optimisation of positron accumulation in the GBAR experiment and study of space propulsion based on antimatter“. Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP075.
Der volle Inhalt der QuelleThe goal of the GBAR experiment is to determine the effect of gravity on antihydrogen atoms. The antihydrogen atoms are created by neutralising antihydrogen ions using laser pulses. The antihydrogen ions are produced after two positrons captures by antiprotons flying through a positronium cloud. In this scheme to produce one single antihydrogen atom 10 x 10¹⁰ positrons have to be beamed on a nanoporous silica to yield the positronium cloud. The positrons are produced by a 9 MeV LINAC accelerating electrons into a tungsten target equipped with a mesh moderator. In this thesis we have studied and optimised the accumulation and trapping of positrons in two subsequent trapping devices.The LINAC based source providing 3 x 10⁷ positrons per second, the particles have to be accumulated. They are first accumulated into a Buffer Gas Trap (BGT), a Penning trap, divided in 3 stages, with N₂ and CO₂, leading to inelastic collisions which insure the trapping and the cooling of the positrons. The positrons are then slowed in the first stage and accumulated in the second stage for 100 ms with a trapping rate of about 1,7 x 10⁶ positrons per second, then they are transferred into the BGT's third stage. This accumulation and transfer procedure is repeated 10 times to finally provide a bunch of 1.5 x 10⁷ positrons every 1.1s (a loss happens during this stacking operation and 100 ms are added for a final radial compression using the Rotating Wall technique, the trapping efficiency is then 5%). This new bunch is then ready to be sent and re-trapped into the High Field Trap.The High Field Trap is a 5 T multi-ring Penning trap allowing to trap large amounts of charged particle for hours. We first tested this trap with electrons by trapping about 5 x 10⁹ of them. The experiments on the electrons lead to the conclusion that a better alignment of the electrodes with respect to the magnetic field still needs to be performed. However, an acceptable situation has been found allowing to re-trap the positrons with 66% efficiency. Then, accumulating the positrons bunches coming from the BGT, it was possible to accumulate 1 x 10⁹ positrons in 1100. This is a really promising result for the GBAR experiment. For the future, it is about to do 10 times more, 10 times faster to collect the desired amount of positrons each time the ELENA decelerator provides a bunch of antiprotons (every 100 s).We also studied how it could be possible to use antimatter to propel a rocket. Indeed, the energy resulting from the antimatter-matter annihilation reaction has properties defying any other propellant. In our study, we focused on the proton-antiproton annihilation reaction in a high magnetic field in order to have the annihilation products aligned with the direction of the thrust. The theoretical model is named the beam cored engine. A simulator has been developed using GEANT4 to evaluate some parameters such the intensity of the field. According to our simulation, it is then possible to get a rocket with a specific impulse of about 0.5 c/g i.e., 1.5 x 10⁷ s (with c the speed of light and g the earth's gravitational acceleration), which is outsized if it is compared to the most modern rocket (434 s for Vulcain, propelling Ariane 5). However, this model assumes the capability to produce and store a macroscopic number of antiprotons, which might be an insurmountable showstopper. Also, with this model, a large amount of gamma rays are produced and a solution to evacuate their energy has to be found
Braconnier, Alexandre. „Étude expérimentale de la combustion d’une particule d’aluminium isolée : influence de la pression et de la composition de l’atmosphère oxydante“. Thesis, Orléans, 2020. http://www.theses.fr/2020ORLE3140.
Der volle Inhalt der QuelleAluminum powders have interesting energy properties and are currently integrated in some solid propellants to improve the performances of propulsion systems. However, the effects induced by the presence of dispersed particles within the propellant flow can alter the stability of the solid rocket motors (SRM) and the use of the energy potential of the aluminum particles can be optimized to further enhance engine efficiency. Therefore, modeling of the aluminum reaction process is a major issue to improve the predictive numerical tools used for SRM development. However, the understanding of the aluminum combustion is still limited and available experimental data are scarce, especially for SRM applications. Thus, based on a specific setup allowing to levitate a single aluminum particle in a controlled environment, this study has led to interesting results. Essential lines of research were introduced on the reaction phenomenology, mainly on the effects resulting from the accumulation of condensed products on the droplet surface during combustion. Different assumptions have also been discussed concerning the mechanisms involved in this process. In addition, a large amount of data was reported on characteristic combustion parameters, allowing the contribution of the parameters of the reactive environment to be defined. The oxidizing efficiency of O₂, CO₂ and CO has been quantified and carbon monoxide seems to act as an inert gas, as well as N₂. The effect of pressure on the burning time has also been determined and is almost limited. Finally, a new empirical law has been established to estimate the burning time of aluminum droplets according to their initial diameter and ambient conditions, suggesting that the aluminum reaction process cannot be described by the theoretical D² law
Simoes, Marine. „Modélisation eulérienne de la phase dispersée dans les moteurs à propergol solide, avec prise en compte de la pression particulaire“. Phd thesis, Toulouse, INPT, 2006. http://oatao.univ-toulouse.fr/7473/1/simoes.pdf.
Der volle Inhalt der QuelleGlowacki, Aurore. „Synthèse de nouveaux dérivés d’hydrazine pour la propulsion spatiale“. Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1187.
Der volle Inhalt der QuelleAnglais This work is dedicated to the synthesis of linear (N-N)2 and cyclic (N N)3 polynitrogen compounds, not well studied, for applications in the field of space propulsion. The high toxicity of hydrazines, currently used in storable bipropellant systems and threatened by the REACH regulation, imposes industrial businesses to replace them by new green propellants, with high or better propulsion performances, but also with low impact towards human health and the environment.To this day, no candidate has been identified to replace space-use hydrazines. However, one candidate has been proposed by the French Space Agency CNES, due to the theorical performances, namely ***. The main objective of this thesis is to converge as much as possible to the synthesis of this target molecule. The aim is to study the stability of the polynitrogen compounds synthesized and to extend the understanding of the nitrogen chemistry. The different pathways for the synthesis of precursors, the triazanes and the azimines, are developed as well as their reactivity especially the oxidation of triazanes and the photochemistry of azimines
Bücher zum Thema "Véhicules spatiaux – Propulsion – Performances"
Calif.) AIAA/ASME/SAE/ASEE Joint Propulsion Conference (49th 2013 San Jose. 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference: July 14‐17, 2013, San Jose, CA. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2013.
Den vollen Inhalt der Quelle findenInternational, Inc Icon Group. The 2000-2005 world outlook for space propulsion units and parts. San Diego, Calif: Icon Group, 2002.
Den vollen Inhalt der Quelle findenCalif.) AIAA/ASME/SAE/ASEE Joint Propulsion Conference (47th 2011 San Diego. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Va.]: [American Institute of Aeronautics and Astronautics], 2011.
Den vollen Inhalt der Quelle findenColo.) AIAA/ASME/SAE/ASEE Joint Propulsion Conference (45th 2009 Denver. 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, Va.]: [American Institute of Aeronautics and Astronautics], 2009.
Den vollen Inhalt der Quelle findenR, Peterson Carl, Hrsg. Mechanics and thermodynamics of propulsion. 2. Aufl. Reading, Mass: Addison-Wesley, 1992.
Den vollen Inhalt der Quelle findenInternational Symposium on Beamed Energy Propulsion (3rd 2004 Troy, N.Y.). Beamed energy propulsion: Third International Symposium on Beamed Energy Propulsion, Troy, New York, 11-14 October 2004. Herausgegeben von Pakhomov Andrew V, Myrabo Leik und Rensselaer Polytechnic Institute. Melville, N.Y: American Institute of Physics, 2005.
Den vollen Inhalt der Quelle findenInternational Symposium on Beamed Energy Propulsion (3rd 2004 Troy, N.Y.). Beamed energy propulsion: Third International Symposium on Beamed Energy Propulsion, Troy, New York, 11-14 October 2004. Herausgegeben von Pakhomov Andrew V, Myrabo Leik und Rensselaer Polytechnic Institute. Melville, N.Y: American Institute of Physics, 2005.
Den vollen Inhalt der Quelle findenInternational Symposium on Beamed Energy Propulsion (3rd 2004 Troy, N.Y.). Beamed energy propulsion: Third International Symposium on Beamed Energy Propulsion, Troy, New York, 11-14 October 2004. Herausgegeben von Pakhomov Andrew V, Myrabo Leik und Rensselaer Polytechnic Institute. Melville, N.Y: American Institute of Physics, 2005.
Den vollen Inhalt der Quelle findenOhio) AIAA/SAE/ASEE Joint Propulsion Conference (54th 2018 Cincinnati. AIAA/SAE/ASEE Joint Propulsion Conference 2018: Held at the AIAA Propulsion and Energy Forum 2018 : Cincinnati, Ohio, USA, 9-11 July 2018. Reston, VA, USA: American Institute of Aeronautics and Astronautics, 2018.
Den vollen Inhalt der Quelle findenAmerican Society of Mechanical Engineers, Society of Automotive Engineers und American Society for Engineering Education, Hrsg. 50th AIAA/ASME/SAE/ASEE joint propulsion conference: July 28-30, 2014, Cleveland, OH. Reston, VA]: [American Institute of Aeronautics and Astronautics], 2013.
Den vollen Inhalt der Quelle finden