Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Véhicule aérien sans pilote (VAP)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Véhicule aérien sans pilote (VAP)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Dissertationen zum Thema "Véhicule aérien sans pilote (VAP)"
Ait, Saadi Amylia. „Coordination of scout drones (UAVs) in smart-city to serve autonomous vehicles“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG064.
Der volle Inhalt der QuelleThe subject of Unmanned Aerial Vehicles (UAVs) has become a promising study field in bothresearch and industry. Due to their autonomy and efficiency in flight, UAVs are considerablyused in various applications for different tasks. Actually, the autonomy of the UAVis a challenging issue that can impact both its performance and safety during the mission.During the flight, the autonomous UAVs are required to investigate the area and determineefficiently their trajectory by preserving their resources (energy related to both altitude andpath length) and satisfying some constraints (obstacles and axe rotations). This problem isdefined as the UAV path planning problem that requires efficient algorithms to be solved,often Artificial Intelligence algorithms. In this thesis, we present two novel approachesfor solving the UAV path planning problem. The first approach is an improved algorithmbased on African Vultures Optimization Algorithm (AVOA), called CCO-AVOA algorithms,which integrates the Chaotic map, Cauchy mutation, and Elite Opposition-based learningstrategies. These three strategies improve the performance of the original AVOA algorithmin terms of the diversity of solutions and the exploration/exploitation search balance. Asecond approach is a hybrid-based approach, called CAOSA, based on the hybridization ofChaotic Aquila Optimization with Simulated Annealing algorithms. The introduction of thechaotic map enhances the diversity of the Aquila Optimization (AO), while the SimulatedAnnealing (SA) algorithm is applied as a local search algorithm to improve the exploitationsearch of the traditional AO algorithm. Finally, the autonomy and efficiency of the UAVare tackled in another important application, which is the UAV placement problem. Theissue of the UAV placement relays on finding the optimal UAV placement that satisfies boththe network coverage and connectivity while considering the UAV's limitation from energyand load. In this context, we proposed an efficient hybrid called IMRFO-TS, based on thecombination of Improved Manta Ray Foraging Optimization, which integrates a tangentialcontrol strategy and Tabu Search algorithms
Bilodeau, Pierre-Richard. „Commande d'un mini véhicule aérien sans pilote en vol stationnaire pour l'opération en milieu restreint“. Thesis, Université Laval, 2009. http://www.theses.ulaval.ca/2009/26719/26719.pdf.
Der volle Inhalt der QuelleShahbazi, Arzhang. „Machine Learning Techniques for UAV-assisted Networks“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG076.
Der volle Inhalt der QuelleThe main focus of this thesis is on modeling, performance evaluation and system-level optimization of next-generation cellular networks empowered by Unmanned Aerial Vehicles (UAVs) by using Machine Learning (ML). In addition, the emerging technology of Integrated Sensing and Communication is investigated for application to future UAV wireless networks. In particular, relying on Reinforcement Learning (RL) technique for controlling UAV actions, this thesis develops a set of new ML frameworks for incorporating important performance metrics in to the RL agent, such as the communication system throughput and localization error, which can be used for system-level analysis and optimization. More specifically, a new learning-based algorithms proposed to maximize the system throughput by utilizing a prior knowledge of users likelihood of presence in a grid. A Federated Learning (FL) framework introduced to find an optimal path planning through training an agent with RL algorithm in different environment settings to achieve generalization and faster convergence. The performance of UAV equipped with Dual-Functional Radar Communication (DFRC) is investigated and the potential benefits of DFRC systems are shown by jointly optimizing communication system throughput and localization error
Liu, Yunsong. „Characterizing methane (CH4) and carbon dioxide (CO2) emissions through mobile platforms from local to national scale“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASJ021.
Der volle Inhalt der QuelleMethane and carbon dioxide are the most abundant human-induced greenhouse gases (GHG) in the atmosphere. Their increasing atmospheric concentration is the main driver of climate change. Therefore, it is critical to monitor the evolution of their sources and sinks. Accurate characterization and quantification of their territorial emissions from different sectors are required in order to determine and manage efficient mitigation actions and policies. The main goal of this Ph.D. is to improve the characterization of CH4 and CO2 sectoral emissions from local to national scale through the development of mobile observation strategies including platforms such as car, drone and aircraft.This study consists of three parts. The first part aims at verifying a national CH4 inventory with a replicable method. I focus on surveying and quantifying significant methane emitters that represent 28% of national (Cyprus) methane emissions. These are essentially landfills and cattle farm areas. The approach is based on car-based mobile measurements and Gaussian plume dispersion modelling. The calculated methane emissions from landfills and enteric fermentation of cattle were about 160% and 40% larger, respectively, than the bottom-up sectoral estimates used in the national inventory. These mobile surveys show that an ensemble of in situ measurements targeting representative methane emission hotspots with consistent temporal and spatial coverage can largely improve national bottom-up emission inventories.The second part focuses on methods to quantify CH4 emissions for the oil and gas industry. It compares ten state-of-the-art commercial methane quantification systems through a series of controlled release experiments at an inert compressor station. The controlled releases covered a range of situations including various leak rates and wind conditions. The results indicated that ‘source-level' systems (close to single leak) generally underestimate emissions, while ‘site-level' systems (integrating emissions for the site) relying on atmospheric dispersion slightly overestimate emission rates. The analysis of this part highlights that unmanned aerial vehicles (UAV) have the potential to bridge the gap between ground-based and airborne observations but are strongly wind sensitive.The last part focused on the development of UAV GHG measurements. I have developed and validated a novel portable UAV-CO2 sensor system that is lightweight but remains sufficiently precise. Through a careful sensor characterization, correction and calibration procedure, we reach an in-flight precision of ± 2 ppm (1σ) at 1 Hz and ± 1 ppm (1σ) at 1 min. This system is relatively inexpensive and easy to reproduce, and has the potential to perform a wide range of field applications, such as urban and point source emissions monitoring.In short, this Ph.D. makes a step forward for future reconciliation of GHG emission estimates based on various observation systems and different approaches, and seeks methods that are easily duplicated and applicable to other regions and emission sectors. While mobile approaches presented here clearly represent important monitoring options, significant challenges remain in current capacity to estimate routinely anthropogenic GHG emission trajectories with sufficient precision and at large scale
Bücher zum Thema "Véhicule aérien sans pilote (VAP)"
FAFA, Lala LALA. Journal de Bord du Pilote de Drone : Journal de Bord des Pilotes et des Opérateurs de Drones: Suivez et Enregistrez Tous Vos Vols J'ai Assez de Place Pour 1 000 Vols Je Suis un Pilote de Véhicule aérien Sans Pilote. Amateurs de Drones I. Independently Published, 2022.
Den vollen Inhalt der Quelle finden