Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vehicle System“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vehicle System" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vehicle System"
Mudda, Avinash, P. Sashi Kiran, Ashish Kumar und Venkata Sreenivas. „Vehicle Allowance System“. International Journal for Research in Applied Science and Engineering Technology 11, Nr. 4 (30.04.2023): 1085–89. http://dx.doi.org/10.22214/ijraset.2023.50169.
Der volle Inhalt der QuelleVasiljević, S., B. Aleksandrović, J. Glišović und M. Maslać. „Regenerative braking on electric vehicles: working principles and benefits of application“. IOP Conference Series: Materials Science and Engineering 1271, Nr. 1 (01.12.2022): 012025. http://dx.doi.org/10.1088/1757-899x/1271/1/012025.
Der volle Inhalt der QuelleBharathi, V. C. „Smart Parking System“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VII (20.07.2021): 1823–26. http://dx.doi.org/10.22214/ijraset.2021.36746.
Der volle Inhalt der QuelleAbd Elrhman, Omer Ali Abubakr, Asim Mohammed Ahmed, Tarig Hyder Mekki und Ghassan Mohammed Taha. „Android Based Vehicle Tracking System“. ADVANCES IN BUSINESS RESEARCH INTERNATIONAL JOURNAL 1, Nr. 2 (31.12.2015): 35. http://dx.doi.org/10.24191/abrij.v1i2.10062.
Der volle Inhalt der QuelleR, SathisKumar. „Enhanced Autonomous Speed Control System for Integrated Cars“. INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, Nr. 05 (11.05.2024): 1–5. http://dx.doi.org/10.55041/ijsrem33627.
Der volle Inhalt der QuelleMa, Jiandong. „Design of Intelligent Vehicle Monitoring System Based on ZigBee“. MATEC Web of Conferences 173 (2018): 02026. http://dx.doi.org/10.1051/matecconf/201817302026.
Der volle Inhalt der QuelleKoppisetti, Harshit Surya. „Number Plate Recognition System using MATLAB“. International Journal for Research in Applied Science and Engineering Technology 9, Nr. VI (30.06.2021): 4851–54. http://dx.doi.org/10.22214/ijraset.2021.35983.
Der volle Inhalt der QuelleNag, Shantanu. „Vehicle Renting System“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 4 (30.04.2024): 4507–14. http://dx.doi.org/10.22214/ijraset.2024.60989.
Der volle Inhalt der QuelleMansour, Ayman M. „Cooperative Multi-Agent Vehicle-to-Vehicle Wireless Network in a Noisy Environment“. International Journal of Circuits, Systems and Signal Processing 15 (22.02.2021): 135–48. http://dx.doi.org/10.46300/9106.2021.15.15.
Der volle Inhalt der QuelleChen, Xuewen, Huaqing Chen und Huan Xu. „Vehicle Detection Based on Multifeature Extraction and Recognition Adopting RBF Neural Network on ADAS System“. Complexity 2020 (06.10.2020): 1–11. http://dx.doi.org/10.1155/2020/8842297.
Der volle Inhalt der QuelleDissertationen zum Thema "Vehicle System"
Deshpande, Anup S. „Computer Joystick Control and Vehicle Tracking System in Electric Vehicles“. University of Cincinnati / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1282569869.
Der volle Inhalt der QuelleKeshri, Ritesh Kumar. „Electric Vehicle Propulsion System“. Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423806.
Der volle Inhalt der QuelleI veicoli elettrici sono considerati uno dei pilastri tra le soluzioni ecosostenibili per superare il problema dell’inquinamento globale dovuto ai gas serra. Questo lavoro di tesi tratta del miglioramento delle prestazioni complessive di un sistema di propulsione di un veicolo elettrico mediante l’aumento dell’autonomia e della caratteristica coppia-velocità. Il sistema di propulsione di un veicolo elettrico consiste in un sistema di alimentazione e di un sistema di trazione, coordinati da un sistema di monitoraggio e controllo. Lo studio analitico e l’implementazione della soluzione proposta per il sistema di propulsione sono stati svolti con riferimento ad un motore brushless a magneti permanenti con fem trapezoidale (PM BLDC), utilizzato comunemente in veicoli elettrici leggeri come gli scooter e le mini-car. Il sistema di propulsione è costituito dal motore PM BLDC e dall’invertitore di tensione, mentre il sistema di alimentazione è formato da sorgenti energia elettrica come le batterie, le celle a combustibile o i pannelli fotovoltaici. Le sorgenti di energia elettrica disponibili sul mercato consentono di raggiungere elevati valori di corrente ma con bassi valori di tensione. Al fine di ottenere i valori di tensioni richiesti dal bus in continua, esse sono collegate in serie tra loro o sono connesse mediante convertitori innalzatori di tensione. Ciò può avvenire o attraverso un tradizionale convertitore dc/dc innalzatore con in cascata un invertitore di tensione (DBI) o attraverso un invertitore di tipo Z-source (ZSI). La valutazione di convenienza delle due modalità di alimentazione è basata sul fattore di utilizzazione e sulle sollecitazioni in termini di corrente e tensione dei transistor di potenza. Oltre ai fattori menzionati in precedenza, sono stati dimensionati gli elementi passivi in funzione della quota parte di potenza fornita dalla cella a combustibile. In relazione ai parametri definiti, la migliore soluzione risulta essere l’alimentazione con DBI, mentre quella con ZSI appare conveniente quando la maggior parte della potenza assorbita dal carico sia fornita dalle batterie. Al fine di migliorare le prestazioni di coppia, il ripple di coppia dovuto alla non ideale commutazione del convertitore ad onda quadra (SqPC) è stato studiato analiticamente, stabilendo la correlazione tra le correnti durante la fase di commutazione e la coppia del motore. Il comportamento di coppia a basse ed ad alte velocità è stato esaminato in dettaglio utilizzando specifiche grandezze del motore. I risultati analitici sono stati utilizzati per spiegare la caduta della coppia sviluppata dal motore ad alte velocità; essi sono stati verificati sperimentalmente su un azionamento di propulsione disponibile in laboratorio. La non costanza della caratteristica coppia-velocità limita l’uso del motore nei pressi della velocità nominale. Per superare questo limite è stata altresi utilizzata un’alimentazione con corrente sinusoidale (SPC). Essa permette di fornire al motore una coppia costante. E’ stata quindi eseguita un’analisi dettagliata al fine di vedere quale sia il metodo di alimentazione più conveniente tra SqPC e SPC. È stata altresì descritta la strategia d’implementazione dell’alimentazione SPC, e i risultati analitici sono stati verificati sperimentalmente. E’ stato eseguito lo studio degli azionamenti con motori PM BLDC con l’approccio dei fasori spaziali. Mentre questo approccio è abbastanza comune nel caso di azionamenti con motori con forza contro-elettromotrice e correnti di sinusoidali, esso non è trattato in letteratura per gli azionamenti con motori PM BLDC, in quanto la forza contro-elettromotrice è trapezoidale e il profilo delle correnti di fase è un onda quadra. Il comportamento del motore PM BLDC è stato rivisitato sul piano stazionario e la commutazione della corrente tra le fasi è stata descritta con l’ausilio dei vettori delle grandezze di fase. Tutti i risultati ottenuti nel piano a-b-c sono stati verificati nel piano stazionario, mostrando la semplicità e le potenzialità dell’approccio vettoriale. Al fine di estendere l’autonomia del veicolo sono stati utilizzati dei pannelli fotovoltaici. Il Sistema Geografico di Informazioni Fotovoltaico sviluppato dal Joint Research Center Europe è stato utilizzato per stimare il valore d’irraggiamento solare disponibile a Padova. È stata stimata la potenza generata da un pannello fotovoltaico di superficie 0.487 m2, formato da 20 celle multi-cristalline, e in relazione ad essa, è stato progettato il convertitore dc-dc elevatore per interfacciare il pannello fotovoltaico al bus in continua di una mini-car disponibile in laboratorio. Un appropriato controllo è stato implementato in un processore DSP al fine di inseguire il punto di massima potenza. L’intero sistema è stato provato all’esterno del laboratorio, facendo le misure necessarie per le verifiche. Un modello analitico delle perdite del convertitore dc-dc elevatore è stato sviluppato per descrivere la variazione di guadagno, rendimento e perdite del convertitore al variare dell’irraggiamento solare. Il lavoro di tesi è stato sviluppato presso il Laboratorio di “Sistemi elettrici per l’automazione e la veicolistica” diretto dal Prof. Giuseppe Buja. Il laboratorio afferisce al Dipartimento di Ingegneria Industriale dell’Università di Padova
Weston, Leigh, und Reyes Javier Marrero. „Driver Safety Alert System - An Alternative to Vehicle-to-Vehicle Communication-based Systems“. Thesis, Malmö högskola, Fakulteten för teknik och samhälle (TS), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20172.
Der volle Inhalt der QuelleKim, Hoe Kyoung. „Development and evaluation of advanced traveler information system (ATIS) using vehicle-to-vehicle (V2V) communication system“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33828.
Der volle Inhalt der QuelleWu, Tahchang Jimmy. „Simulation and analysis of the control system of the hybrid vehicle“. Ohio : Ohio University, 1989. http://www.ohiolink.edu/etd/view.cgi?ohiou1182180337.
Der volle Inhalt der QuelleKjellgren, Andreas. „Graphics System in Vehicle Electronics“. Thesis, Uppsala University, Department of Information Technology, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-103104.
Der volle Inhalt der QuelleIn this thesis three problems areas are studied related to embedded system and device driver programming: a GPS driver, the CAN Bus and study of graphics libraries suitable for embedded systems. The thesis has two parts: an academic study and an implementation phase based on the academic study. The Freescale i.MX31ADS development board together with ENEA's operating system OSE is used as a basis for the study and it is shown that OpenGL ES is best suited for the platform. Further the system can be complemented by the use of Mobile 3D Graphics, a Java based solution. A driver for the graphics port is implemented for Linux and OpenGL ES works using a graphics accelerator on the hardware. In the field of CAN communication an analysis of an existing driver is made. The driver has two shortcomings that lead to an incorrect priority order when multiple messages are sent simultaneously on the CAN bus. The main problem is that the bit, which tells if the data field of the CAN message fits in a single message, has the greatest impact on a CAN message priority. Another problem is that the signal numbers have not been assigned in a consistent manner. A design proposal and an implementation are made. The work with GPS is limited to theory and design in terms of creating the basis for the future creation of the driver. A survey of the interfaces that exist between the GPS module and other hardware is done and additional requirements from the rest of the system are highlighted.
Brierley, Scott, und Roy Lothringer. „EXPENDABLE LAUNCH VEHICLE VIDEO SYSTEM“. International Foundation for Telemetering, 2003. http://hdl.handle.net/10150/607452.
Der volle Inhalt der QuelleThe Delta expendable launch vehicle has been flying onboard video cameras. The camera is an NTSC analog camera that directly modulates an FM transmitter. A standard FM deviation is used to maximize link performance while minimizing transmitted bandwidth. Pre-emphasis per CCIR recommendation 405 is used to improve the video signal-to-noise ratio. The camera and transmitter obtain power from either a separate battery or the vehicle power system. Lighting is provided by sunlight, or a light may be added when sunlight is unavailable. Multiple cameras are accommodated by either using multiple transmitters or by switching the individual cameras in flight. IRIG-B timing is used to correlate the video with other vehicle telemetry.
Zulkanthiwar, Amey. „VEHICLE INFORMATION SYSTEM USING BLOCKCHAIN“. CSUSB ScholarWorks, 2019. https://scholarworks.lib.csusb.edu/etd/899.
Der volle Inhalt der QuelleKang, Yong Suk. „Development of Predictive Vehicle Control System using Driving Environment Data for Autonomous Vehicles and Advanced Driver Assistance Systems“. Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/85106.
Der volle Inhalt der QuellePh. D.
Kirsch, Patricia Jean. „Autonomous swarms of unmanned vehicles software control system and ground vehicle testing /“. College Park, Md. : University of Maryland, 2005. http://hdl.handle.net/1903/2993.
Der volle Inhalt der QuelleThesis research directed by: Dept. of Electrical and Computer Engineering. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Bücher zum Thema "Vehicle System"
Zhao, Youqun, und Fen Lin. Vehicle System Dynamics. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2019-4.
Der volle Inhalt der QuelleEngineers, Society of Automotive, und SAE International Congress & Exposition (1994 : Detroit, Mich.), Hrsg. Vehicle suspension system advancements. Warrendale, Pa: Society of Automotive Engineers, 1994.
Den vollen Inhalt der Quelle findenKaliske, Michael, Markus Oeser, Lutz Eckstein, Sabine Leischner, Wolfram Ressel und Frohmut Wellner, Hrsg. Coupled System Pavement - Tire - Vehicle. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75486-0.
Der volle Inhalt der QuelleCope, D. Vehicle emissions control system tampering. Ottawa, Ont: Environment Canada, 1988.
Den vollen Inhalt der Quelle findenWang, Shuo, Yu Wang, Min Tan, Rui Wang, Xiang Dong, Qingping Wei und Liuji Shang. Underwater Biomimetic Vehicle-Manipulator System. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0655-0.
Der volle Inhalt der QuelleEasley, Wesley C. Transport systems research vehicle color display system operations manual. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1989.
Den vollen Inhalt der Quelle findenGoodarzi, Avesta, und Amir Khajepour. Vehicle Suspension System Technology and Design. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-031-01494-9.
Der volle Inhalt der QuelleYang, Shaopu, Liqun Chen und Shaohua Li. Dynamics of Vehicle-Road Coupled System. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-45957-7.
Der volle Inhalt der QuelleGoodarzi, Avesta, Yukun Lu und Amir Khajepour. Vehicle Suspension System Technology and Design. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-21804-0.
Der volle Inhalt der QuelleBallard, Robert D. The JASON remotely operated vehicle system. [Woods Hole, Mass.]: Woods Hole Oceanographic Institution, 1993.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Vehicle System"
Spiryagin, Maksym, Stefano Bruni, Christopher Bosomworth, Peter Wolfs und Colin Cole. „System Integration“. In Rail Vehicle Mechatronics, 337–44. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003028994-13.
Der volle Inhalt der QuelleKashem, Saad, Romesh Nagarajah und Mehran Ektesabi. „Vehicle Suspension System“. In Springer Tracts in Mechanical Engineering, 23–37. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5478-5_3.
Der volle Inhalt der QuelleWeik, Martin H. „vehicle highway system“. In Computer Science and Communications Dictionary, 1884. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/1-4020-0613-6_20710.
Der volle Inhalt der QuelleWu, Xiaodong. „Vehicle Steering System“. In Advanced Chassis Control Technology for Steer-by-Wire Vehicles, 1–18. New York: CRC Press, 2024. http://dx.doi.org/10.1201/9781003481669-1.
Der volle Inhalt der QuellePopp, Karl, und Werner Schiehlen. „System Definition and Modeling“. In Ground Vehicle Dynamics, 1–9. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-68553-1_1.
Der volle Inhalt der QuelleDu, Mingfang. „Vehicle Borne Radar System“. In Autonomous Vehicle Technology, 39–63. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4143-6_3.
Der volle Inhalt der QuelleDu, Mingfang. „Energy and Power System“. In Autonomous Vehicle Technology, 175–88. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4143-6_7.
Der volle Inhalt der QuelleZhao, Youqun, und Fen Lin. „Introduction“. In Vehicle System Dynamics, 1–20. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2019-4_1.
Der volle Inhalt der QuelleZhao, Youqun, und Fen Lin. „Evaluation of Active Safety Based on Driver-Vehicle Closed-Loop Control System Dynamics“. In Vehicle System Dynamics, 107–33. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2019-4_5.
Der volle Inhalt der QuelleZhao, Youqun, und Fen Lin. „States and Parameters Estimation in the Vehicle System Dynamics“. In Vehicle System Dynamics, 179–252. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-2019-4_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vehicle System"
Sahu, Ayush, Avani Katlana, Arpita Sharma, Maya Yadav Baniya, Sumitra Sureliya und Shubhrata Kanungo. „Vehicle Rental Management System: OnDemand Vehicle Ride“. In 2024 International Conference on Advances in Computing Research on Science Engineering and Technology (ACROSET), 1–11. IEEE, 2024. http://dx.doi.org/10.1109/acroset62108.2024.10743592.
Der volle Inhalt der QuelleVantsevich, Vladimir, David Gorsich, Jesse Paldan, Jordan Whitson, Brian Butrico und Oleg Sapunkov. „Vehicle Dynamic Factor Characterized by Actual Velocity and Combined Influence of the Transmission and Driveline System“. In 11th Asia-Pacific Regional Conference of the ISTVS. International Society for Terrain-Vehicle Systems, 2022. http://dx.doi.org/10.56884/arao9883.
Der volle Inhalt der QuelleKassem, Abdallah, Rabih Jabr, Ghady Salamouni und Ziad Khairallah Maalouf. „Vehicle Black Box System“. In 2008 2nd Annual IEEE Systems Conference. IEEE, 2008. http://dx.doi.org/10.1109/systems.2008.4519050.
Der volle Inhalt der QuelleChe, Judy, und Mark Jennings. „Vehicle System Modeling for HEV Systems Development“. In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-34650.
Der volle Inhalt der QuelleYadav, Amrendra Singh, Aditi Tripathi, Ashutosh Kumar und Dharmendra Singh Kushwaha. „Vehicle-to-Vehicle Energy Trading Blockchain System for Electric Vehicles“. In 2024 16th International Conference on Knowledge and Smart Technology (KST). IEEE, 2024. http://dx.doi.org/10.1109/kst61284.2024.10499695.
Der volle Inhalt der QuelleS. L., Sini, Thenmozhy P und Abisha Jey J. B. „Vehicle Overload Detection System Using Pic Microcontroller“. In The International Conference on scientific innovations in Science, Technology, and Management. International Journal of Advanced Trends in Engineering and Management, 2023. http://dx.doi.org/10.59544/sash1478/ngcesi23p121.
Der volle Inhalt der QuelleKang, Namwoo, Fred M. Feinberg und Panos Y. Papalambros. „Autonomous Electric Vehicle Sharing System Design“. In ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/detc2015-46491.
Der volle Inhalt der QuelleLee, Ungki, Sunghyun Jeon und Ikjin Lee. „Shared Autonomous Vehicle System Design for Battery Electric Vehicle (BEV) and Fuel Cell Electric Vehicle (FCEV)“. In ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-67734.
Der volle Inhalt der QuelleIshida, Takaharu. „Feasible Study for the Availability of Electric Vehicles for the Stable Operation in Power System Network“. In 1st International Electric Vehicle Technology Conference. 10-2 Gobancho, Chiyoda-ku, Tokyo, Japan: Society of Automotive Engineers of Japan, 2011. http://dx.doi.org/10.4271/2011-39-7248.
Der volle Inhalt der QuelleHamersma, Herman, und Schalk Els. „The Development of a Longitudinal Control System for a Sports-Utility-Vehicle“. In ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/detc2013-12048.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Vehicle System"
D'Onofrio, L. Combat Vehicle Identification System (CVIS). Fort Belvoir, VA: Defense Technical Information Center, Dezember 1989. http://dx.doi.org/10.21236/ada219184.
Der volle Inhalt der QuellePegau, W. S., Timothy Boyd und Hemantha Wijesekera. Autonomous Underwater Vehicle Sampling System. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada622172.
Der volle Inhalt der QuelleAshmore, Colin. Logistic Vehicle System (LVS) Mod Demo Vehicle Armour Protection Kit Installation. Fort Belvoir, VA: Defense Technical Information Center, August 2001. http://dx.doi.org/10.21236/ada401565.
Der volle Inhalt der QuellePapatheofanis, B. J., M. L. Hasenack, R. T. Teller und G. F. Ramsey. Global positioning automatic vehicle location system. Office of Scientific and Technical Information (OSTI), März 1997. http://dx.doi.org/10.2172/444037.
Der volle Inhalt der QuelleStinson, Margaret, Dawn Garmenn und Chris Harris. Logistic Vehicle System Replacement Cost Estimate. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada401488.
Der volle Inhalt der QuelleBallard, Robert D. The JASON Remotely Operated Vehicle System. Fort Belvoir, VA: Defense Technical Information Center, Februar 1993. http://dx.doi.org/10.21236/ada277885.
Der volle Inhalt der QuelleContreras, Ulysses, Guangbu Li, Ahmed A. Shabana, Paramsothy Jayakumar, Michael D. Letherwood und Craig D. Foster. Soil Models and Vehicle System Dynamics. Fort Belvoir, VA: Defense Technical Information Center, Mai 2013. http://dx.doi.org/10.21236/ada578850.
Der volle Inhalt der QuelleMahyuddin, Andi Isra, und Pulung Nurprasetio. Design Calculation of Vehicle Suspension System. Warrendale, PA: SAE International, Mai 2005. http://dx.doi.org/10.4271/2005-08-0181.
Der volle Inhalt der QuelleLord, Carter K. Concept Study - Vehicle Waste Disposal System. Fort Belvoir, VA: Defense Technical Information Center, Januar 1986. http://dx.doi.org/10.21236/ada169045.
Der volle Inhalt der QuelleChien, Stanley, Lauren Christopher, Yaobin Chen, Mei Qiu und Wei Lin. Origin-Destination Vehicle Counts in Weaving Area Utilizing Existing Field Data. Purdue University, 2024. http://dx.doi.org/10.5703/1288284317719.
Der volle Inhalt der Quelle