Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vecteur viraux“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vecteur viraux" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vecteur viraux"
Tangy, Frédéric, und Jean-Nicolas Tournier. „Les virus au service de la santé : la vaccination“. médecine/sciences 38, Nr. 12 (Dezember 2022): 1052–60. http://dx.doi.org/10.1051/medsci/2022168.
Der volle Inhalt der QuelleBertagnoli, Stéphane. „Actualité sur les vecteurs vaccinaux viraux“. Bulletin de l'Académie Vétérinaire de France, Nr. 1 (2017): 22. http://dx.doi.org/10.4267/2042/62249.
Der volle Inhalt der QuelleChouchan, Dominique. „Thérapie Génique: Loin des vecteurs viraux“. Biofutur 1997, Nr. 166 (April 1997): 11. http://dx.doi.org/10.1016/s0294-3506(97)86766-x.
Der volle Inhalt der QuelleBERTAGNOLI, S., B. PIGNOLET, S. BIACCHESI, M. ELOIT, B. KLONJKOWSKI, J. RICHARDSON und M. BREMONT. „Les vecteurs viraux : outils modernes de vaccination“. INRAE Productions Animales 21, Nr. 1 (22.03.2008): 127–36. http://dx.doi.org/10.20870/productions-animales.2008.21.1.3383.
Der volle Inhalt der QuelleLegendre, JY, J. Haensler und JS Rémy. „Les vecteurs non-viraux de thérapie génique.“ médecine/sciences 12, Nr. 12 (1996): 1334. http://dx.doi.org/10.4267/10608/675.
Der volle Inhalt der QuelleQuéméneur, Éric. „Les vecteurs viraux en immunothérapie du cancer“. Annales des Mines - Réalités industrielles Novembre 2023, Nr. 4 (09.11.2023): 87–91. http://dx.doi.org/10.3917/rindu1.234.0087.
Der volle Inhalt der QuellePeschanski, M. „Tyrosine hydroxylase : trois vecteurs viraux pour un gène“. médecine/sciences 11, Nr. 3 (1995): 474. http://dx.doi.org/10.4267/10608/2231.
Der volle Inhalt der QuelleManus, Jean-Marie. „Anémie de Fanconi : vecteurs viraux pour essai de thérapie génique“. Revue Francophone des Laboratoires 2020, Nr. 518 (Januar 2020): 10. http://dx.doi.org/10.1016/s1773-035x(20)30011-3.
Der volle Inhalt der QuelleFontenille, D., und C. Paupy. „Vecteurs et environnement pour support de l’émergence virale“. Médecine et Maladies Infectieuses 38 (Juni 2008): S27—S29. http://dx.doi.org/10.1016/s0399-077x(08)72980-9.
Der volle Inhalt der QuelleMartinent, E., und M. Zawati. „Le virage numérique comme vecteur d’égalité (territoriale) en santé (I)“. Ethics, Medicine and Public Health 15 (Oktober 2020): 100593. http://dx.doi.org/10.1016/j.jemep.2020.100593.
Der volle Inhalt der QuelleDissertationen zum Thema "Vecteur viraux"
Link, Peggy. „Identification des déterminants viraux responsables de la spécificité de transmission du Grapevine fanleaf virus par son nématode vecteur Xiphinema index“. Université Louis Pasteur (Strasbourg) (1971-2008), 2005. http://www.theses.fr/2005STR13140.
Der volle Inhalt der QuelleGrapevine fanleaf virus (GFLV) causes fanleaf degeneration, one of the most severe viral diseases of grapevines worlwide. This virus is specifically transmitted by the nematode Xiphinema index and its genome consists of two single-stranded positive-sense RNA species. My thesis work focused on the identification of the molecular determinants involved in the specific transmission of GFLV by Xiphinema index. Previous studies indicated that residues responsible for transmission map to RNA2, in particular within the 9 C-terminal amino acids of the movement protein and the 504 amino acids of the coat protein. Chimeric cDNA of RNA2 were constructed by exchanging GFLV residues by their counterparts in Arabis mosaic virus (ArMV), another virus responsible for fanleaf degeneration that is specifically transmitted by Xiphinema diversicaudatum but not by Xiphinema index. The infectivity of chimeric RNA2 was tested on systemic herbaceous host plants in the presence of GFLV RNA1, as well as their transmissibility by Xiphinema index. Results indicated that the coat protein is the sole viral determinant for the specific transmission. A 3D model of the GFLV capsid was constructed from the crystal structure of Tobacco ringspot virus to identify surface amino acids that are specific and conserved among GFLV isolates for mutagenesis experiments. Two of the coat protein mutants systemically infected host plants. Their transmissibility by Xiphinema index is being tested. The transmissibility of the other mutants was not determined because they did not infect systemically host plants likely because their RNA are not encapsidated, as shown by RNA protection assays upon electroporation of Chenopodium quinoa protoplasts
BRUYERE, ARNAUD. „Etude des determinants viraux impliques dans la transmission du beet western yellows virus (bwyv) par son vecteur, le puceron myzus persicae“. Strasbourg 1, 1997. http://www.theses.fr/1997STR13128.
Der volle Inhalt der QuelleCottard, Virginie. „Développement et utilisation de vecteurs viraux et cellulaires en thérapie génique anti-inflammatoire : application à un modèle de polyarthrite rhumatoïde“. Paris 7, 2003. http://www.theses.fr/2003PA077029.
Der volle Inhalt der QuelleAvenel, Allan. „Caractérisation et immunomodulation de la réponse cellulaire contre les produits de thérapie génique“. Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU1028.
Der volle Inhalt der QuelleRecombinant adeno-associated viruses Of positive donors, followed by AAV8 with 24%. In addition,(rAAVS) are efficient tools for in vivo gene transfer,with 8 drugs approved by the FDA or the EMA in theUnited States and Europe. However, there are stillmajor hurdles to overcome to improve their efficiencyand safety in clinics. Actually, severe adverse eventsrelated to the activation of the host's immune systemfollowing systemic injection of high doses of rAAV.into patients have been reported, leading in somecases to clinical trials hold. This immunotoxicity ispartly due to a reactivation of a T cell-mediatedcellular response, developed after primary wild-typeAAV infection during childhood. This response is stillpoorly characterized, despite its strong potentialeffect on treatment efficacy and patient health. Theaim of this thesis is therefore to improve ourknowledge on this pre-existing cellular response toAAV. We first studied the prevalence of the cellularresponse towards 6 AAV serotypes used in clinicaltrials in a cohort of-45-145 healthy donors from thePays de la Loire area. Our results show that in ourcohort, AAV9 was the most prevalent with 45%assessment of the cytokine expression profile highlighteddifferences between anti-AAV8 and anti-AAV9 T cells. To furthercharacterize these cells, | developed a protocol to enrich thevery rare population of anti-AAV8 and anti-AAV9 T lymphocytesdepending on their IFN-y secretion in healthy donors (n=6 andn=9 respectively). These cells were then analyzed by spectralcytometry using a panel of 26 colors to characterize themaccording to their phenotype and state of differentiation. Thisallowed us to identify a subpopulation of EM CD8 T-cells inresponse to AAV8 and AAV9. Moreover, a subpopulation ofEMRA CD8 T-cells in an advanced state of differentiation wasidentified in response to AAV8. The development of these toolswill allow to develop innovative immunomodulatory strategies to prevent AAV immunogenicity in patient
BELIN, CHRISTOPHE. „Recherche des determinants viraux impliques dans la transmission du virus du court-noue de la vigne (gflv) par son vecteur, le nematode xiphinema index“. Université Louis Pasteur (Strasbourg) (1971-2008), 1999. http://www.theses.fr/1999STR13078.
Der volle Inhalt der QuelleVaysse, Laurence. „Développement de vecteurs non viraux pour le transfert de gène dans l'épithélium respiratoire“. Bordeaux 2, 2000. http://www.theses.fr/2000BOR28795.
Der volle Inhalt der QuelleDoucet, Gilles. „Les vecteurs viraux pour le développement de thérapies géniques ex vivo dans les cellules du muscle squelettique humain“. Master's thesis, Université Laval, 2007. http://hdl.handle.net/20.500.11794/19481.
Der volle Inhalt der QuelleVenail, Frédéric. „Transfert d'ADN dans la cochlée de mammifère par vecteur adénoviral : mise au point technique vers un modèle de régénération de l'organe de Corti utilisant l'interférence ARN“. Montpellier 1, 2008. http://www.theses.fr/2008MON1T024.
Der volle Inhalt der QuelleLéger, Psylvia. „Etude comparée de l'infection de cellules de l'hôte mammifère et de cellules du vecteur moustique par le virus de la Fièvre de la Vallée du Rift“. Paris 7, 2009. http://www.theses.fr/2009PA077073.
Der volle Inhalt der QuelleThe Rift Valley Fever Virus (RVFV) is an arbovirus transmitted by mosquitoes to humans and livestock that causes dramatic epidemies and epizootics. As a member of the Phlebovirus genus of the Bunyaviridae family, the short segment (S) of its genome has an ambisens coding strategy for the nucleoprotein N and the non structural protein NSs. The later present an unusual localization to the nucleus, where it forms filamentous structures in mammalian cells. Through the interaction with several cellular factors, the NSs protein can be considered as a virulent factor. Interaction of NSs with p44, a subunit of the general transcription factor TFIIH, induces a progressive inhibition of the cellular RNA synthesis. NSs is also responsible of a specific inhibition of the interferon (3 (IFN(3) pathway when interacting with SAP30 and the transcription factor YY1, both required for the cell antiviral response. Contrary to mammals, the infection of mosquito cells by the RVFV remains asymptomatic. As the filamentous structure in the nucleus vanishes early after infection of mosquito cells, we analyzed the interaction of the NSs protein with the mosquito orthologs of the p44 and SAP30. A transient shutoff of the transcription is associated when NSs is present in the nucleus of mosquito cells, whereas the cleafance of NSs correlates with RNA synthesis restoration. These findings highlight the role of the NSs protein for differential pathogenesis observed between arthropod and mammal
Lourenco, Sofia. „Etude de la modulation de la traduction du virus de l'hépatite C par des facteurs viraux en cis et en trans et développement de nouveaux outils via le système lentiviral“. Paris 6, 2008. http://www.theses.fr/2008PA066333.
Der volle Inhalt der QuelleHepatitis C virus (HCV) is responsible of a major health problem, infecting 3% of world population. Hepatitis C Virus (HCV) possesses a positive single-stranded RNA genome with highly structured non coding (NC) regions at its extremities: 5’NC and 3’NC. Translation initiation of HCV RNA occurs via an Internal Ribosome Entry Site (IRES) located at its 5’end. Our aim was to clarify the role of cis (3’NCR) and trans (C, NS5A, NS5B) viral factors on the regulation of IRES activity. By the use of a dual RNA reporter system, targeting the translation step and avoiding the cryptic IRES promoter activity, relative IRES activities measured in luminometry (= RLuc/FLuc activities ratio) revealed the following features : 1) all the HCV 3’ non coding (NC) sequences tested highly stimulate in cis the IRES efficiency; 2) a dose and genotype dependent modulation of the translation in trans was shown with the capsid and NS5B ; and 3) not any cooperative effect could be obtained either between viral proteins, or in the presence of both cis and trans factors. Taking together these results encouraged us to propose a model in which the viral factors tested act sequentially to modulate viral translation and the switch to replication. We then focus on the development of novel tools for evaluating the IRES activity analysis. We established a bicistronic lentiviral system, which revealed efficient for drugs screening, however not adequate for a precise IRES activity analysis. Experiments actually in progress aim the precise analysis of IRES activity, drugs screening and in addition the study of other viruses, replacing the vaccine system currently used
Bücher zum Thema "Vecteur viraux"
Julien, Jennifer. Le clônage de la protéine virale CrmA dans un vecteur d'expression. Sudbury, Ont: Université Laurentienne, 2000.
Den vollen Inhalt der Quelle findenL, Hefferon Kathleen, Hrsg. Virus expression vectors. Tribandrum: Transworld Research Network, 2007.
Den vollen Inhalt der Quelle findenMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Den vollen Inhalt der Quelle findenMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Den vollen Inhalt der Quelle findenMukhopadhyay, S. Plant virus, vector epidemiology and management. Enfield, NH: Science Publishers, 2010.
Den vollen Inhalt der Quelle findenT, Plumb R., Hrsg. Plant virus vector interactions. San Diego: Academic Press, 2002.
Den vollen Inhalt der Quelle findenChan, C. K. Aphid-transmitted viruses and their vectors of the world. Vancouver: Research Branch, Agriculture Canada, 1991.
Den vollen Inhalt der Quelle findenInternational Symposium on Viruses with Fungal Vectors (1987 St. Andrews University). Viruses with fungal vectors. Wellesbourne, Warwick: Association of Applied Biologists, 1988.
Den vollen Inhalt der Quelle findenC, Asher M. J., Cooper J. I und Association of Applied Biologists, Hrsg. Viruses with fungal vectors: Proceedings of a conference at the University of St. Andrews, 25-27 August, 1987. Wellesbourne, Warwick: Association of Applied Biologists, 1988.
Den vollen Inhalt der Quelle findenDanielová, Vlasta. Relationships of mosquitoes to Ťahyňa virus as determinant factors of its circulation in nature. Prague: Academia, Publishing House of the Czechoslovak Academy of Sciences, 1992.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Vecteur viraux"
Conzelmann, Karl-Klaus. „Reverse Genetics of Mononegavirales: The Rabies Virus Paradigm“. In Sendai Virus Vector, 1–20. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_1.
Der volle Inhalt der QuelleNagai, Yoshiyuki, und Atsushi Kato. „Sendai Virus Biology and Engineering Leading up to the Development of a Novel Class of Expression Vector“. In Sendai Virus Vector, 21–68. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_2.
Der volle Inhalt der QuelleIida, Akihiro, und Makoto Inoue. „Concept and Technology Underlying Sendai Virus (SeV) Vector Development“. In Sendai Virus Vector, 69–89. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_3.
Der volle Inhalt der QuelleWiegand, Marian, und Wolfgang J. Neubert. „Genome Replication-Incompetent Sendai Virus Vaccine Vector Against Respiratory Viral Infections That Is Capable of Eliciting a Broad Spectrum of Specific Immune Response“. In Sendai Virus Vector, 91–126. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_4.
Der volle Inhalt der QuelleSeki, Sayuri, und Tetsuro Matano. „Development of Vaccines Using SeV Vectors Against AIDS and Other Infectious Diseases“. In Sendai Virus Vector, 127–49. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_5.
Der volle Inhalt der QuelleYonemitsu, Yoshikazu, Yasuji Ueda und Mamoru Hasegawa. „BioKnife, a Modified Sendai Virus, to Resect Malignant Tumors“. In Sendai Virus Vector, 151–69. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_6.
Der volle Inhalt der QuelleFusaki, Noemi, und Hiroshi Ban. „Induction of Human Pluripotent Stem Cells by the Sendai Virus Vector: Establishment of a Highly Efficient and Footprint-Free System“. In Sendai Virus Vector, 171–83. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_7.
Der volle Inhalt der QuelleYonemitsu, Yoshikazu, Takuya Matsumoto und Yoshihiko Maehara. „Gene Therapy for Peripheral Arterial Disease Using Sendai Virus Vector: From Preclinical Studies to the Phase I/IIa Clinical Trial“. In Sendai Virus Vector, 185–99. Tokyo: Springer Japan, 2013. http://dx.doi.org/10.1007/978-4-431-54556-9_8.
Der volle Inhalt der QuelleDíaz-Menéndez, Marta, und Clara Crespillo-Andújar. „The Vector“. In Zika Virus Infection, 21–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59406-4_4.
Der volle Inhalt der QuelleGulhan, Baris. „Biological Methods Used in Gene Therapy“. In Gene Therapy, 39–63. Istanbul: Nobel Tip Kitabevleri, 2024. http://dx.doi.org/10.69860/nobel.9786053358824.3.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vecteur viraux"
Araujo, Carlos Soares, Marco Cristo und Rafael Giusti. „Predicting Music Popularity on Streaming Platforms“. In Simpósio Brasileiro de Computação Musical. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/sbcm.2019.10436.
Der volle Inhalt der QuelleMueller, Melanie, Ralf Amann, Thomas Feger und Hans-Georg Rammensee. „Abstract A170: The mode of action of Orf virus – a novel viral vector for therapeutic cancer vaccines“. In Abstracts: CRI-CIMT-EATI-AACR Inaugural International Cancer Immunotherapy Conference: Translating Science into Survival; September 16-19, 2015; New York, NY. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/2326-6074.cricimteatiaacr15-a170.
Der volle Inhalt der QuelleTomilova, Yulia, Yulia Khvorostova, Mikhail Ivanov, Marina Mikhailenko, Elena Runkova, Viktoriia Makukha, Tatiana Komissarova und Eduard Agletidinov. „Complex PCR-diagnostics of respiratory infections in A children's hospital“. In Proceedings of the International Congress Public Health - Achievements and Challenges, 72. Institute of Public Health of Serbia "Dr Milan Jovanović Batut", 2024. http://dx.doi.org/10.5937/batutphco24027t.
Der volle Inhalt der QuelleNurpeisova, Ainur, Zhandos Abay, Kamshat Shorayeva, Sandugash Sadikaliyeva, Bolat Yespembetov, Kuanish Jekebekov, Nazym Syrym et al. „Determining optimal conditions for growing recombinant vectors to be used in developing a bovine tuberculosis vaccine“. In Research for Rural Development 2023 : annual 29th international scientific conference proceedings. Latvia University of Life Sciences and Technologies, 2023. http://dx.doi.org/10.22616/rrd.29.2023.013.
Der volle Inhalt der QuelleLessa, Ruan Teixeira, Daniel Pedrosa Cassiano, Yasmin Jawhari da Silva, Sebastião José de Almeida Júnior, Adrianny Freitas Teixeira, Ana Luíza Paes da Silveira, Antônio Henrique Roberti dos Santos et al. „Epidemiological study on hospitalizations for viral encephalitis in Brazil between january 2010 to december 2020“. In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.561.
Der volle Inhalt der QuelleChisholm, Paul Joseph. „Competition with non-vectors mediates virus-vector interactions“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.115741.
Der volle Inhalt der QuelleZhu, Richard, und Sujata Bhatia. „Optimizing COVID-19 Vaccine Diffusion in Respiratory Mucosa through Stokes-Einstein Modeling“. In 2022 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/dmd2022-1065.
Der volle Inhalt der Quellede Souza, Laise Novellino Nunes, Wagner Rambaldi Telles und Jader Lugon Junior. „Analysis of legislation relating to vectors and management of urban floods in the state of Rio de Janeiro“. In ENSUS 2024 - XII Encontro de Sustentabilidade em Projeto, 178–88. Grupo de Pesquisa Virtuhab/UFSC, 2024. http://dx.doi.org/10.29183/2596-237x.ensus2024.v12.n1.p178-188.
Der volle Inhalt der QuelleRedinbaugh, Margaret (Peg). „Vector-virus interactions in maize agroecosystems in East Africa“. In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94561.
Der volle Inhalt der QuelleRaafat, Nermin, Chantal Mengus, Michael Heberer, Giulio C. Spagnoli und Paul Zajac. „Abstract 1500: Modulation of recombinant vaccinia virus vector immunogenicity“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-1500.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Vecteur viraux"
Ullman, Diane, James Moyer, Benjamin Raccah, Abed Gera, Meir Klein und Jacob Cohen. Tospoviruses Infecting Bulb Crops: Evolution, Diversity, Vector Specificity and Control. United States Department of Agriculture, September 2002. http://dx.doi.org/10.32747/2002.7695847.bard.
Der volle Inhalt der QuelleMawassi, Munir, und Valerian V. Dolja. Role of the viral AlkB homologs in RNA repair. United States Department of Agriculture, Juni 2014. http://dx.doi.org/10.32747/2014.7594396.bard.
Der volle Inhalt der QuelleMawassi, Munir, Adib Rowhani, Deborah A. Golino, Avichai Perl und Edna Tanne. Rugose Wood Disease of Grapevine, Etiology and Virus Resistance in Transgenic Vines. United States Department of Agriculture, November 2003. http://dx.doi.org/10.32747/2003.7586477.bard.
Der volle Inhalt der QuelleUllman, Diane E., Benjamin Raccah, John Sherwood, Meir Klein, Yehezkiel Antignus und Abed Gera. Tomato Spotted Wilt Tosporvirus and its Thrips Vectors: Epidemiology, Insect/Virus Interactions and Control. United States Department of Agriculture, November 1999. http://dx.doi.org/10.32747/1999.7573062.bard.
Der volle Inhalt der QuelleGrubman, Marvin J., Yehuda Stram, Peter W. Mason und Hagai Yadin. Development of an Empty Viral Capsid Vaccine against Foot and Mouth Disease. United States Department of Agriculture, August 1995. http://dx.doi.org/10.32747/1995.7570568.bard.
Der volle Inhalt der QuelleAntignus, Yehezkiel, Ernest Hiebert, Shlomo Cohen und Susan Webb. Approaches for Studying the Interaction of Geminiviruses with Their Whitefly Vector Bemisia tabaci. United States Department of Agriculture, Juli 1995. http://dx.doi.org/10.32747/1995.7604928.bard.
Der volle Inhalt der QuelleHernández Guzmán, Anngie Katherine, Diana Marcela Torres Jiménez und Olga Yanet Pérez Cardona. Effect of the acquisition access period, retention period and inoculation access period on transmission efficiency of Potato yellow vein virus by Trialeurodes vaporariorum. Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA, 2013. http://dx.doi.org/10.21930/agrosavia.poster.2013.1.
Der volle Inhalt der QuelleMawassi, Munir, Baozhong Meng und Lorne Stobbs. Development of Virus Induced Gene Silencing Tools for Functional Genomics in Grapevine. United States Department of Agriculture, Juli 2013. http://dx.doi.org/10.32747/2013.7613887.bard.
Der volle Inhalt der QuelleKlement, Eyal, Elizabeth Howerth, William C. Wilson, David Stallknecht, Danny Mead, Hagai Yadin, Itamar Lensky und Nadav Galon. Exploration of the Epidemiology of a Newly Emerging Cattle-Epizootic Hemorrhagic Disease Virus in Israel. United States Department of Agriculture, Januar 2012. http://dx.doi.org/10.32747/2012.7697118.bard.
Der volle Inhalt der QuelleDurden, Lance A., Thomas M. Logan, Mark L. Wilson und Kenneth J. Linthicum. Experimental Vector Incompetence of a Soft Tick, Ornithodoros sonrai (Acari: Argasidae), for Crimean-Congo Hemorrhagic Fever Virus. Fort Belvoir, VA: Defense Technical Information Center, Januar 1993. http://dx.doi.org/10.21236/ada265568.
Der volle Inhalt der Quelle