Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Variational bayes methods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Variational bayes methods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Variational bayes methods"
Park, Mijung, James Foulds, Kamalika Chaudhuri und Max Welling. „Variational Bayes In Private Settings (VIPS)“. Journal of Artificial Intelligence Research 68 (05.05.2020): 109–57. http://dx.doi.org/10.1613/jair.1.11763.
Der volle Inhalt der QuelleKaji, Daisuke, und Sumio Watanabe. „Two design methods of hyperparameters in variational Bayes learning for Bernoulli mixtures“. Neurocomputing 74, Nr. 11 (Mai 2011): 2002–7. http://dx.doi.org/10.1016/j.neucom.2010.06.027.
Der volle Inhalt der QuelleNakajima, Shinichi, und Sumio Watanabe. „Variational Bayes Solution of Linear Neural Networks and Its Generalization Performance“. Neural Computation 19, Nr. 4 (April 2007): 1112–53. http://dx.doi.org/10.1162/neco.2007.19.4.1112.
Der volle Inhalt der QuelleMA, ZHANYU, und ANDREW E. TESCHENDORFF. „A VARIATIONAL BAYES BETA MIXTURE MODEL FOR FEATURE SELECTION IN DNA METHYLATION STUDIES“. Journal of Bioinformatics and Computational Biology 11, Nr. 04 (16.07.2013): 1350005. http://dx.doi.org/10.1142/s0219720013500054.
Der volle Inhalt der QuelleSvensson, Valentine, Adam Gayoso, Nir Yosef und Lior Pachter. „Interpretable factor models of single-cell RNA-seq via variational autoencoders“. Bioinformatics 36, Nr. 11 (16.03.2020): 3418–21. http://dx.doi.org/10.1093/bioinformatics/btaa169.
Der volle Inhalt der QuelleYuan, Ke, Mark Girolami und Mahesan Niranjan. „Markov Chain Monte Carlo Methods for State-Space Models with Point Process Observations“. Neural Computation 24, Nr. 6 (Juni 2012): 1462–86. http://dx.doi.org/10.1162/neco_a_00281.
Der volle Inhalt der QuelleZhao, Yuexuan, und Jing Huang. „Dirichlet Process Prior for Student’s t Graph Variational Autoencoders“. Future Internet 13, Nr. 3 (16.03.2021): 75. http://dx.doi.org/10.3390/fi13030075.
Der volle Inhalt der QuelleShapovalova, Yuliya. „“Exact” and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study“. Entropy 23, Nr. 4 (15.04.2021): 466. http://dx.doi.org/10.3390/e23040466.
Der volle Inhalt der QuelleBresson, Georges, Anoop Chaturvedi, Mohammad Arshad Rahman und Shalabh. „Seemingly unrelated regression with measurement error: estimation via Markov Chain Monte Carlo and mean field variational Bayes approximation“. International Journal of Biostatistics 17, Nr. 1 (21.09.2020): 75–97. http://dx.doi.org/10.1515/ijb-2019-0120.
Der volle Inhalt der QuelleTichý, Ondřej, und Václav Smídl. „Estimation of input function from dynamic PET brain data using Bayesian blind source separation“. Computer Science and Information Systems 12, Nr. 4 (2015): 1273–87. http://dx.doi.org/10.2298/csis141201051t.
Der volle Inhalt der QuelleDissertationen zum Thema "Variational bayes methods"
Marnissi, Yosra. „Bayesian methods for inverse problems in signal and image processing“. Thesis, Paris Est, 2017. http://www.theses.fr/2017PESC1142/document.
Der volle Inhalt der QuelleBayesian approaches are widely used in signal processing applications. In order to derive plausible estimates of original parameters from their distorted observations, they rely on the posterior distribution that incorporates prior knowledge about the unknown parameters as well as informations about the observations. The posterior mean estimator is one of the most commonly used inference rule. However, as the exact posterior distribution is very often intractable, one has to resort to some Bayesian approximation tools to approximate it. In this work, we are mainly interested in two particular Bayesian methods, namely Markov Chain Monte Carlo (MCMC) sampling algorithms and Variational Bayes approximations (VBA).This thesis is made of two parts. The first one is dedicated to sampling algorithms. First, a special attention is devoted to the improvement of MCMC methods based on the discretization of the Langevin diffusion. We propose a novel method for tuning the directional component of such algorithms using a Majorization-Minimization strategy with guaranteed convergence properties.Experimental results on the restoration of a sparse signal confirm the performance of this new approach compared with the standard Langevin sampler. Second, a new sampling algorithm based on a Data Augmentation strategy, is proposed to improve the convergence speed and the mixing properties of standard MCMC sampling algorithms. Our methodological contributions are validated on various applications in image processing showing the great potentiality of the proposed method to manage problems with heterogeneous correlations between the signal coefficients.In the second part, we propose to resort to VBA techniques to build a fast estimation algorithm for restoring signals corrupted with non-Gaussian noise. In order to circumvent the difficulties raised by the intricate form of the true posterior distribution, a majorization technique is employed to approximate either the data fidelity term or the prior density. Thanks to its flexibility, the proposed approach can be applied to a broad range of data fidelity terms allowing us to estimate the target signal jointly with the associated regularization parameter. Illustration of this approach through examples of image deconvolution in the presence of mixed Poisson-Gaussian noise, show the good performance of the proposed algorithm compared with state of the art supervised methods
Simpson, Edwin Daniel. „Combined decision making with multiple agents“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:f5c9770b-a1c9-4872-b0dc-1bfa28c11a7f.
Der volle Inhalt der QuelleTomešová, Tereza. „Autonomní jednokanálový deinterleaving“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-445470.
Der volle Inhalt der QuelleYu, Xue Qin. „Comparing survival from cancer using population-based cancer registry data - methods and applications“. University of Sydney, 2007. http://hdl.handle.net/2123/1774.
Der volle Inhalt der QuelleOver the past decade, population-based cancer registry data have been used increasingly worldwide to evaluate and improve the quality of cancer care. The utility of the conclusions from such studies relies heavily on the data quality and the methods used to analyse the data. Interpretation of comparative survival from such data, examining either temporal trends or geographical differences, is generally not easy. The observed differences could be due to methodological and statistical approaches or to real effects. For example, geographical differences in cancer survival could be due to a number of real factors, including access to primary health care, the availability of diagnostic and treatment facilities and the treatment actually given, or to artefact, such as lead-time bias, stage migration, sampling error or measurement error. Likewise, a temporal increase in survival could be the result of earlier diagnosis and improved treatment of cancer; it could also be due to artefact after the introduction of screening programs (adding lead time), changes in the definition of cancer, stage migration or several of these factors, producing both real and artefactual trends. In this thesis, I report methods that I modified and applied, some technical issues in the use of such data, and an analysis of data from the State of New South Wales (NSW), Australia, illustrating their use in evaluating and potentially improving the quality of cancer care, showing how data quality might affect the conclusions of such analyses. This thesis describes studies of comparative survival based on population-based cancer registry data, with three published papers and one accepted manuscript (subject to minor revision). In the first paper, I describe a modified method for estimating spatial variation in cancer survival using empirical Bayes methods (which was published in Cancer Causes and Control 2004). I demonstrate in this paper that the empirical Bayes method is preferable to standard approaches and show how it can be used to identify cancer types where a focus on reducing area differentials in survival might lead to important gains in survival. In the second paper (published in the European Journal of Cancer 2005), I apply this method to a more complete analysis of spatial variation in survival from colorectal cancer in NSW and show that estimates of spatial variation in colorectal cancer can help to identify subgroups of patients for whom better application of treatment guidelines could improve outcome. I also show how estimates of the numbers of lives that could be extended might assist in setting priorities for treatment improvement. In the third paper, I examine time trends in survival from 28 cancers in NSW between 1980 and 1996 (published in the International Journal of Cancer 2006) and conclude that for many cancers, falls in excess deaths in NSW from 1980 to 1996 are unlikely to be attributable to earlier diagnosis or stage migration; thus, advances in cancer treatment have probably contributed to them. In the accepted manuscript, I described an extension of the work reported in the second paper, investigating the accuracy of staging information recorded in the registry database and assessing the impact of error in its measurement on estimates of spatial variation in survival from colorectal cancer. The results indicate that misclassified registry stage can have an important impact on estimates of spatial variation in stage-specific survival from colorectal cancer. Thus, if cancer registry data are to be used effectively in evaluating and improving cancer care, the quality of stage data might have to be improved. Taken together, the four papers show that creative, informed use of population-based cancer registry data, with appropriate statistical methods and acknowledgement of the limitations of the data, can be a valuable tool for evaluating and possibly improving cancer care. Use of these findings to stimulate evaluation of the quality of cancer care should enhance the value of the investment in cancer registries. They should also stimulate improvement in the quality of cancer registry data, particularly that on stage at diagnosis. The methods developed in this thesis may also be used to improve estimation of geographical variation in other count-based health measures when the available data are sparse.
Prevost, Raphaël. „Méthodes variationnelles pour la segmentation d'images à partir de modèles : applications en imagerie médicale“. Phd thesis, Université Paris Dauphine - Paris IX, 2013. http://tel.archives-ouvertes.fr/tel-00932995.
Der volle Inhalt der QuelleBücher zum Thema "Variational bayes methods"
Šmídl, Václav. The variational Bayes method in signal processing. Berlin: Springer, 2006.
Den vollen Inhalt der Quelle findenservice), SpringerLink (Online, Hrsg. Bases, outils et principes pour l'analyse variationnelle. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Den vollen Inhalt der Quelle findenSmídl, Václav, und Anthony Quinn. The Variational Bayes Method in Signal Processing (Signals and Communication Technology). Springer, 2005.
Den vollen Inhalt der Quelle findenQuinn, Anthony, und Václav Šmídl. The Variational Bayes Method in Signal Processing. Springer, 2010.
Den vollen Inhalt der Quelle findenThe Variational Bayes Method in Signal Processing. Berlin/Heidelberg: Springer-Verlag, 2006. http://dx.doi.org/10.1007/3-540-28820-1.
Der volle Inhalt der QuelleQuinn, Anthony, und Václav Šmídl. The Variational Bayes Method in Signal Processing (Signals and Communication Technology). Springer, 2006.
Den vollen Inhalt der Quelle findenCanli, Turhan, Hrsg. The Oxford Handbook of Molecular Psychology. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199753888.001.0001.
Der volle Inhalt der QuelleBayley, Robert, Richard Cameron und Ceil Lucas, Hrsg. The Oxford Handbook of Sociolinguistics. Oxford University Press, 2013. http://dx.doi.org/10.1093/oxfordhb/9780199744084.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Variational bayes methods"
Prathap, G. „Variational bases: A philosophical summing-up“. In The Finite Element Method in Structural Mechanics, 387–406. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-017-3319-9_12.
Der volle Inhalt der QuelleWatanabe, Chihiro, Kaoru Hiramatsu und Kunio Kashino. „Recursive Extraction of Modular Structure from Layered Neural Networks Using Variational Bayes Method“. In Discovery Science, 207–22. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67786-6_15.
Der volle Inhalt der QuelleYoshimoto, Junichiro, Shin Ishii und Masa-aki Sato. „System Identification Based on Online Variational Bayes Method and Its Application to Reinforcement Learning“. In Artificial Neural Networks and Neural Information Processing — ICANN/ICONIP 2003, 123–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-44989-2_16.
Der volle Inhalt der QuellePurcell, Shaun M. „Genetic Methodologies and Applications“. In Neurobiology of Mental Illness, herausgegeben von Karl Deisseroth, 160–71. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199934959.003.0012.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Variational bayes methods"
Ayasso, Hacheme, Sofia Fekih-Salem, Ali Mohammad-Djafari, Marcelo de Souza Lauretto, Carlos Alberto de Bragança Pereira und Julio Michael Stern. „Variational Bayes Approach For Tomographic Reconstruction“. In BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP, 2008. http://dx.doi.org/10.1063/1.3039006.
Der volle Inhalt der QuelleVillalba, Jesus, und Eduardo Lleida. „Unsupervised adaptation of PLDA by using variational Bayes methods“. In ICASSP 2014 - 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2014. http://dx.doi.org/10.1109/icassp.2014.6853695.
Der volle Inhalt der QuelleYang, Yaodong, Rui Luo und Yuanyuan Liu. „Adversarial Variational Bayes Methods for Tweedie Compound Poisson Mixed Models“. In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8682184.
Der volle Inhalt der QuelleFoulds, James R., Mijung Park, Kamalika Chaudhuri und Max Welling. „Variational Bayes in Private Settings (VIPS) (Extended Abstract)“. In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/705.
Der volle Inhalt der QuelleSaito, Hidetoshi, Masayuki Hayashi und Ryuji Kohno. „The Maximum A Posteriori Decoding Using Variational Bayes Methods for Digital Magnetic Recording Channels“. In 2007 IEEE Information Theory Workshop. IEEE, 2007. http://dx.doi.org/10.1109/itw.2007.4313041.
Der volle Inhalt der QuelleJiang, Zhuxi, Yin Zheng, Huachun Tan, Bangsheng Tang und Hanning Zhou. „Variational Deep Embedding: An Unsupervised and Generative Approach to Clustering“. In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/273.
Der volle Inhalt der QuelleKaji, Daisuke, Kazuho Watanabe und Masahiro Kobayashi. „Multi-Decoder RNN Autoencoder Based on Variational Bayes Method“. In 2020 International Joint Conference on Neural Networks (IJCNN). IEEE, 2020. http://dx.doi.org/10.1109/ijcnn48605.2020.9206686.
Der volle Inhalt der QuelleYin, Fei, und Cheng-lin Liu. „A Variational Bayes Method for Handwritten Text Line Segmentation“. In 2009 10th International Conference on Document Analysis and Recognition. IEEE, 2009. http://dx.doi.org/10.1109/icdar.2009.98.
Der volle Inhalt der QuelleLiu, Hao, Lirong He, Haoli Bai, Bo Dai, Kun Bai und Zenglin Xu. „Structured Inference for Recurrent Hidden Semi-markov Model“. In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/339.
Der volle Inhalt der QuelleTamai, Tomoki, und Koujin Takeda. „Variational Bayes method for matrix factorization to two sparse factorized matrices“. In 2018 International Symposium on Information Theory and Its Applications (ISITA). IEEE, 2018. http://dx.doi.org/10.23919/isita.2018.8664315.
Der volle Inhalt der Quelle