Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Vapour-liquid-solid growth“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Vapour-liquid-solid growth" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Vapour-liquid-solid growth"
Schönherr, Piet, Liam J. Collins-McIntyre, ShiLei Zhang, Patryk Kusch, Stephanie Reich, Terence Giles, Dominik Daisenberger, Dharmalingam Prabhakaran und Thorsten Hesjedal. „Vapour-liquid-solid growth of ternary Bi2Se2Te nanowires“. Nanoscale Research Letters 9, Nr. 1 (2014): 127. http://dx.doi.org/10.1186/1556-276x-9-127.
Der volle Inhalt der QuelleLi, Shisheng, Yung-Chang Lin, Wen Zhao, Jing Wu, Zhuo Wang, Zehua Hu, Youde Shen et al. „Vapour–liquid–solid growth of monolayer MoS2 nanoribbons“. Nature Materials 17, Nr. 6 (23.04.2018): 535–42. http://dx.doi.org/10.1038/s41563-018-0055-z.
Der volle Inhalt der QuelleDalacu, Dan, Alicia Kam, D. Guy Austing, Xiaohua Wu, Jean Lapointe, Geof C. Aers und Philip J. Poole. „Selective-area vapour–liquid–solid growth of InP nanowires“. Nanotechnology 20, Nr. 39 (02.09.2009): 395602. http://dx.doi.org/10.1088/0957-4484/20/39/395602.
Der volle Inhalt der QuelleBoutarek, N., Didier Chaussende und Roland Madar. „High SiC Growth Rate Obtained by Vapour-Liquid-Solid Mechanism“. Materials Science Forum 556-557 (September 2007): 105–8. http://dx.doi.org/10.4028/www.scientific.net/msf.556-557.105.
Der volle Inhalt der QuelleZha, M., L. Zanotti, G. Zuccalli, M. Ardoino, R. Capelletti und C. Paorici. „Vapour-liquid-solid Growth and Characterisation of N-methylurea Crystals“. Crystal Research and Technology 32, Nr. 1 (1997): 213–20. http://dx.doi.org/10.1002/crat.2170320121.
Der volle Inhalt der QuelleHashimoto, Shinobu, und Akira Yamaguchi. „Growth of Cr2O3 whiskers by the vapour-liquid-solid mechanism“. Journal of Materials Science 31, Nr. 2 (Januar 1996): 317–22. http://dx.doi.org/10.1007/bf01139146.
Der volle Inhalt der QuelleShakthivel, D., W. T. Navaraj, Simon Champet, Duncan H. Gregory und R. S. Dahiya. „Propagation of amorphous oxide nanowires via the VLS mechanism: growth kinetics“. Nanoscale Advances 1, Nr. 9 (2019): 3568–78. http://dx.doi.org/10.1039/c9na00134d.
Der volle Inhalt der QuelleMadroñero, A. „Possibilities for the vapour-liquid-solid model in the vapour-grown carbon fibre growth process“. Journal of Materials Science 30, Nr. 8 (April 1995): 2061–66. http://dx.doi.org/10.1007/bf00353034.
Der volle Inhalt der QuelleMårtensson, T., M. Borgström, W. Seifert, B. J. Ohlsson und L. Samuelson. „Fabrication of individually seeded nanowire arrays by vapour–liquid–solid growth“. Nanotechnology 14, Nr. 12 (17.10.2003): 1255–58. http://dx.doi.org/10.1088/0957-4484/14/12/004.
Der volle Inhalt der QuelleNg, I. K., und H. Suzuki. „Low temperature growth of Si nanowires via vapour–liquid–solid mechanism“. Materials Research Innovations 13, Nr. 3 (September 2009): 192–95. http://dx.doi.org/10.1179/143307509x437590.
Der volle Inhalt der QuelleDissertationen zum Thema "Vapour-liquid-solid growth"
Da, Conceicao Lorenzzi Jean Carlos. „Growth and doping of heteroepitaxial 3C-SiC layers on α-SiC substrates using Vapour-Liquid-Solid mechanism“. Thesis, Lyon 1, 2010. http://www.theses.fr/2010LYO10179.
Der volle Inhalt der QuelleRecently, the use of an original growth approach based on vapour-liquid-solid (VLS) mechanism with Ge-Si melts has led to significant improvement of the crystalline quality of the 3C-SiC thin layers heteroepitaxially grown on α-SiC(0001) substrate. This work tries to deepen the knowledge of such specific growth method, to improve the process and to determine the properties of the grown material. The first part was dedicated to the understanding and mastering of the various mechanisms involved in 3C-SiC growth by VLS mechanism. This led to the determination of the parameters limiting sample size and the demonstration of the benefits of using 50 at% Ge instead of 75 at% Ge melts. A study of lateral enlargement on patterned substrates gave some interesting hints which can be integrated in the model of twin defect elimination. The incorporation of non intentional and intentional n- and p-type dopants during VLS growth was studied. For n-type doping, a clear link between N impurity and 3C polytype stability was demonstrated. Besides, high purity layers with residual n-type doping below 1x1017 cm-3 were achieved. For p-type doping, the best element was shown to be Al and not Ga, even if it has to be alloyed with Ge-Si melts to avoid homoepitaxial growth. Finally, these layers were characterised by several optical and electrical means like Raman spectroscopy, low temperature photoluminescence, deep leveltransient spectroscopy and MOS capacitors measurements. Very low concentrationsof fixed oxide charges estimated about 7×109 cm-2 and interface states densities Dit equal to 1.2×1010 cm-2eV-1at 0.63 eV below the conduction band have been achieved. These record values are a very good base toward 3C-SiC MOSFET
Stanislav, Silvestr. „Příprava nízkodimenzionálních III-V polovodičů“. Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2021. http://www.nusl.cz/ntk/nusl-443735.
Der volle Inhalt der QuelleLekhal, Kaddour. „Le procédé HVPE pour la croissance de nanofils semiconducteurs III-V“. Phd thesis, Université Blaise Pascal - Clermont-Ferrand II, 2013. http://tel.archives-ouvertes.fr/tel-00844400.
Der volle Inhalt der QuelleAwaluddin, Amir. „Fundamental studies of chemical vapour deposition processes : Far-IR synchrotron studies of the adsorption of tim oxide precursors on tin oxide and direct liquid injection CVD growth of titania thin films on silicon“. Thesis, University of Salford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.272929.
Der volle Inhalt der QuelleJaffal, Ali. „Single photon sources emitting in the telecom band based on III-V nanowires monolithically grown on silicon“. Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI019.
Der volle Inhalt der QuelleA telecom band single photon source (SPS) monolithically grown on silicon (Si) substrate is the Holy Grail to realize CMOS compatible devices for optical-based information technologies. To reach this goal, we propose the monolithic growth of InAs/InP quantum dot-nanowires (QD-NWs) on silicon substrates by molecular beam epitaxy (MBE) using the vapour-liquid-solid (VLS) method. In the beginning, we have focused our efforts on optimizing the growth conditions aiming at achieving ultra-low NWs density without any pre-growth or post-growth efforts allowing us to optically excite a single QD-NW on the as-grown sample and to preserve the monolithic growth on silicon. Subsequently, we have turned our attention on enhancing the InAs QD light extraction from the InP NW waveguide towards the free space to achieve a bright source with a Gaussian far-field (FF) emission profile to efficiently couple the single photons to a single-mode optical fiber. This was done by controlling the NW geometry to obtain needlelike-tapered NWs with a very small taper angle and a NW diameter tailored to support a single mode waveguide. Such a geometry was successfully produced using a temperature-induced balance over axial and radial growths during the gold-catalyzed growth of the NWs. Optical measurements have confirmed the single photon nature of the emitted photons with g2(0) = 0.05 and a Gaussian FF emission profile with an emission angle θ = 30°. For optimal device performances, we have then tackled a crucial issue in such NW geometry represented by the unknown polarization state of the emitted photons. To solve this issue, one solution is to embed a single QD in a NW with an asymmetrical cross-section optimized to inhibit one polarization state and to improve the emission efficiency of the other one. An original growth strategy was proposed permitting us to obtain highly linearly polarized photons along the elongated axis of the asymmetrical NWs. Finally, the encapsulation of the QD-NWs within amorphous silicon (a-Si) waveguides have opened the path to produce fully integrated SPSs devices on Si in the near future
Buchteile zum Thema "Vapour-liquid-solid growth"
Boutarek, N., Didier Chaussende und Roland Madar. „High SiC Growth Rate Obtained by Vapour-Liquid-Solid Mechanism“. In Materials Science Forum, 105–8. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-442-1.105.
Der volle Inhalt der QuelleSoueidan, Maher, Gabriel Ferro, François Cauwet, L. Mollet, Christophe Jacquier, Ghassan Younes und Yves Monteil. „Using Vapour-Liquid-Solid Mechanism for SiC Homoepitaxial Growth on on-axis α-SiC (0001) at Low Temperature“. In Silicon Carbide and Related Materials 2005, 271–74. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-425-1.271.
Der volle Inhalt der QuelleSultana, Jenifar, Somdatta Paul, Anupam Karmakar und Sanatan Chattopadhyay. „Investigating the Growth-Time Dependent Comparative Performance of Vapour-Liquid-Solid (VLS) Grown p-CuO/n-Si Thin Film Hetero-Junction Solar Cells“. In Springer Proceedings in Physics, 157–64. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3908-9_18.
Der volle Inhalt der QuelleTinker, Peter B., und Peter Nye. „Solute Interchange between Solid, Liquid, and Gas Phases in the Soil“. In Solute Movement in the Rhizosphere. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195124927.003.0007.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Vapour-liquid-solid growth"
Uchino, T., C. H. de Groot, P. Ashburn, K. N. Bourdakos und D. C. Smith. „Ge-catalyzed Vapour-Liquid-Solid growth of Carbon Nanotubes“. In ESSDERC 2006. Proceedings of the 36th European Solid-State Device Research Conference. IEEE, 2006. http://dx.doi.org/10.1109/essder.2006.307676.
Der volle Inhalt der QuelleLorenzzi, J., V. Soulière, F. Cauwet, D. Carole, G. Ferro, Gabriel Ferro und Paul Siffert. „Growing p-type 3C-SiC heteroepitaxial layers by Vapour-Liquid-Solid mechanism on 6H-SiC substrate“. In 2010 WIDE BANDGAP CUBIC SEMICONDUCTORS: FROM GROWTH TO DEVICES: Proceedings of the E-MRS Symposium∗ F∗. AIP, 2010. http://dx.doi.org/10.1063/1.3518276.
Der volle Inhalt der QuelleMandal, Subrata, Subhrajit Sikdar, Rajib Saha, Anupam Karmakar und Sanatan Chattopadhyay. „Investigating the impact of growth time on the electrical performance of vapour-liquid-solid (VLS) grown Ge/n-Si hetero-junction“. In 2020 International Symposium on Devices, Circuits and Systems (ISDCS). IEEE, 2020. http://dx.doi.org/10.1109/isdcs49393.2020.9262999.
Der volle Inhalt der QuelleKawaji, Masahiro. „Studies of Vibration-Induced Multi-Phase Fluid Phenomena and Pulsating Heat Pipe Performance Under Microgravity“. In ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45664.
Der volle Inhalt der QuelleDas, S. K., M. Bock, M. Biswas, E. McGlynn und R. Grunwald. „Strong multiphoton-absorption-induced UV luminescence from ZnO nanorod arrays grown by vapour-liquid-solid mechanism“. In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192301.
Der volle Inhalt der QuellePaul, Somdatta, Anindita Das, Jenifar Sultana, Anupam Karmakar, Sanatan Chattopadhyay und Anirban Bhattacharyya. „Performance investigation of n-ZnO nanowire/p-CuO thin film heterojunction solar cell grown by chemical bath deposition and vapour liquid solid technique“. In 2015 6th International Conference on Computers and Devices for Communication (CODEC). IEEE, 2015. http://dx.doi.org/10.1109/codec.2015.7893200.
Der volle Inhalt der QuelleHeyes, Andrew L., Loukas Botsis, Niall R. McGlashan und Peter R. N. Childs. „A Thermodynamic Analysis of Chemical Looping Combustion“. In ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/gt2011-45480.
Der volle Inhalt der Quelle