Dissertationen zum Thema „Vaccins ADN“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Vaccins ADN" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Marsac, Delphine. „Utilisation de vaccins ADN codant pour des pseudoparticules virales comme outils de présentation d'antigènes du VIH-1 et du VIS pour l'induction d'une réponse immunitaire T in vivo“. Paris 5, 2004. http://www.theses.fr/2004PA05N03S.
Der volle Inhalt der QuelleMajor histocompatibility complex class I exogenous presentation of HIV-1 particules activates specific CTL responses. We used DNA-based immunization with plasmids codingfor HIV-1 Gag particles pseudotyped with vesicular stomatitis virus glycoprotein. The presence of the VSV-G enveloppe increased the efficiency of the specific anti-Gag lysis due to a better presentation of the Gag epitopes by MHC class I and II processing pathway. We also improved the immunogenicity of DNA vaccines encoding hepatitis B surface antigen fused to antigenic domains of simian/human immunodeficiency viruses in mice and macaques rhesus. Immunization with hybrid DNA induced effector and long-lasting precursors T, cells, efficiently
Hechard, Céline. „Vaccination ADN contre la chlamydiose abortive ovine : évaluation de la protection des vaccins ADN MOMP, DnaK et GroEL dans un modèle murin d'infection“. Tours, 2002. http://www.theses.fr/2002TOUR4002.
Der volle Inhalt der QuelleRobin, Marie. „Vaccination ADN dans la leucémie aiguë promyélocytaire et étude de la réponse immune“. Paris 7, 2007. http://www.theses.fr/2007PA077073.
Der volle Inhalt der QuelleAcute promyelocytic leukemia (APL) represents 10% of all acute myeloblastic leukaemia and is characterized by a reciprocal chromosomal translocation between 15 and 17 fusing PML and the retinoid acid receptor alpha (RARalpha). Treatment with all trans-retinoid acid (ATRA) and chemotherapy induce complete remission in more than 90% of patients with APL through ATRA-induced differentiation of the leukemic cells. Unfortunately, 10 to 30% of patients relapse. The aim of our work was to test a DNA antileukemic vaccine coding for the PML-RARalpha jonction and study the specific immunogenecity in this disease. In an APL transplantable mice model, we set up a vaccine protocol using a plasmid coding for a promoter, an adjuvant (Fc fragment from tetanie toxin) and fusion protein PML-RAR. In this model, vaccinated mice had a better survival, in particular when they received vaccine and ATRA. Mechanism of for this immune response was cellular and humoral response as demonstrated by increased interferon secretion, specific APL target lysis and specific antibodies against RARalpha. In this first study, we observed that antibody production increased with time and that antibody production on day 18 was predictive for a better survival. In humans treated according to usual protocols, we also observed an antibody secretions which in half of patients, were already present at low level at diagnosis. In 9 tested patients, antibody production was increasing with time as in mice, suggesting maintenance treatment is associated with an increased production of antibody. Furthermore, 50% of patients had also anti-nuclear and anti-neutrophil cytoplasmic antibody. We conclude that DNA vaccine is an encouraging targeted immunotherapy, in particular in patients at high risk of relapse, when patients had low leukemic burden. Antibody production should continue to be evaluated through ongoing prospective immunomonitoring of patients with APL from diagnosis throughout treatment to establish whether there is a correlation between anti-RARalpha and clinical or other biological parameter
Rolland-Turner, Magali. „Développement d'un vaccin immunocontraceptif : mise au point de tests immunologiques dans le modèle vulpin et développement de vaccins ADN avec les antigènes spermatiques fSP13 et fSP8“. Nancy 1, 2005. http://www.theses.fr/2005NAN11303.
Der volle Inhalt der QuelleFaurez, Florence. „Plasmide vaccinal réplicatif chez le porc : biosécurité“. Rennes 1, 2010. http://www.theses.fr/2010REN1S023.
Der volle Inhalt der QuelleSeveral strategies to improve DNA vaccine have been studied but few studies on the biosafety of these new strategies were carried out. This thesis provides some answers on biosafety of a replicative plasmid derived from replicative elements of porcine circovirus type 2 (PCV2). The biosafety assessment of a replicative plasmid derived from viral elements include parameters such as its characterization in vitro, assessment of its effectiveness in a vaccine, its distribution in the body, the characterization of the replication of DNA, its kinetics of elimination and number of events integrated into the genome of the organism. To contribute in part to assess the biosafety of replicative plasmid, used as a plasmid vaccine, we made a panel of replicative plasmids derived from PCV2, a method determining the rate of replication of replicative plasmids and the validation protocol used in the study of distribution of plasmids in pigs
Desolme, Benoît. „Vaccination par ADN contre la toxoplasmose : application au modèle murin avec les gènes GRA4 et SAG1 de Toxoplasma gondii : stratégies d'optimisation de la protection“. Tours, 1999. http://www.theses.fr/1999TOUR3804.
Der volle Inhalt der QuelleInnocentin, Silvia. „Utilisation de bactéries lactiques recombinantes invasives comme outil novateur pour la vaccination ADN par voie muqueuse“. Versailles-St Quentin en Yvelines, 2008. http://www.theses.fr/2008VERS0012.
Der volle Inhalt der QuelleIn this study, we evaluate the potential of Lactic Acid Bacteria (LAB) as mucosal DNA vaccine delivery vectors. LAB are food-grade bacteria already used to deliver proteins at the mucosal level. We showed that Lactococcus lactis, a model LAB, can deliver a eukaryotic expression plasmid coding for a major cow’s milk allergen, beta-lactoglobulin (BLG) gene in Caco-2 cell line with subsequent expression of BLG protein by the cells. To improve DNA delivery, we used L. Lactis strains rendered invasive by expressing Listeria monocytogenes InlA or Staphylococcus aureus FnBPA genes. Both showed comparable internalization rates and ability to deliver a GFP expression plasmid: 1% of Caco-2 cells expressed GFP while no GFP was detected with non invasive strains. We then tested invasive L. Lactis as DNA vaccine carrier in two disease models of mouse: allergic response to BLG and influenza virus infection. In vitro, Caco-2 cells expressed 30-fold more BLG when co-incubated with invasive strains compared to non invasive. In vivo, intranasal administration of invasive FnBPA+ strain and non invasive strains induced a Th2 and Th1 immune responses against BLG, respectively. Intranasal administration of invasive FnBPA+ strains designed to express hemagglutinin and nucleoprotein of influenza virus was less efficient than intradermal naked DNA immunization to protect mice from viral challenge
Moussa, Maha. „Immunité et protection induites par un lentivecteur ADN innovant chez les modèles animaux de vaccination VIH-1“. Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAV029/document.
Der volle Inhalt der QuelleWe recently developed an innovative prototype non-integrative lentivector DNA vaccine against HIV-1 /AIDS that we tested in pilot studies using animal models of HIV vaccine. We found that a single immunization with our prototype vaccine (CAL-SHIV-IN-) allowed the implementation of potent humoral and cellular responses in all immunized macaques. In addition, both types of responses persisted over a period of 74 weeks post-immunization in absence of antigenic boost. The characterization of the above revealed that vaccine specific T cell responses included polyfunctional CD4+ and CD8+ T cells against all antigens expressed by the vaccine. Detailed phenotypic and functional examinations of these cells showed that they were composed of effector (EM) and central memory (CM) T cells. More importantly they also contained a fraction of precursor memory T cells with high proliferative capacity (PHPC). Immune responses primed by our vaccine regiment correlated with protection in all vaccinated macaques (6/6). As expected our vaccine-induced immune responses did not prevent from infection acquisition but controlled the replication of the highly pathogenic and heterologous SIVmac251 challenge given as repeated low dose by the intrarectal mucosal route. All vaccinated animals (6/6) controlled their viremia to undetectable level using conventional PCR during at least 10 months post infection (end of the experiment). We further focused on PHPC responses associated with viral control and found that these cells vigorously proliferate upon ex vivo stimulation with specific antigens in presence of the homeostatic IL-7 and IL-15 cytokines. Proliferating antigen specific cells contained a type of stem cell-like memory T cells (TSCM). These latter (TSCM) might be a major asset in favor of our lentivector and vaccination strategy due to their high capacity for self-regeneration/maintenance in absence of antigen source
Szelechowski, Marion. „Vers une réplication controlée des vecteurs dérivés de l'adénovirus canin de type 2“. Paris 7, 2008. http://www.theses.fr/2008PA077186.
Der volle Inhalt der QuelleAmong the vectors derived for vaccination purpose, those derived from adenoviruses revealed particularly hopeful results. Replicative and defective vectors have been developed from Cav2, and we were able to demonstrate their to settle a protective immune response against the transgene product both in mice and sheep. This work aims to propose an alternative vector for vaccination derived from Cav2 and characterized by an abortive or semi-replicative behavior in the transduced cells. This vector should enable the genomic replication without production of new infectious particles. It should therefore possess both replicative vectors efficacy and defective vectors security. This can be achieved by the deletion of defined viral genomic regions, in particular within the late expression region which is dispensable for the first stages of the replication cycle. To manipulate accurately the viral genome, we elaborated a transcriptional map of the late transcriptional unit of Cav2 génome. Deletion of ail or part of the targeted open reading frames were then realized, or nor sens mutation were introduced within them, by homologuous recombinaison on the wild type Cav2 genome. Then we constructed complementing cell lines expressing the viral deleted proteins, in order to produce the recombinant viral particles. Finally, the semi-replicative properties of protease deleted Cav2 were confirmed by in vitro analysis
Bernelin-Cottet, Cindy. „Développement d'un vaccin à ADN contre le virus du Syndrome Dysgénésique et Respiratoire Porcin (PRRSV)“. Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLA004/document.
Der volle Inhalt der QuelleThe Porcine Reproductive and Respiratory Syndrome (PRRS) is the most damaging infectious disease in pigs worldwide. The etiologic agent is an Arterivirus, the PRRSV, which presents a large genetic diversity. PRRSV infection is frequently associated with influenza virus co-infection. Vaccination is a highly suitable way to control these viruses. In the case of PRRSV, the most effective commercial vaccines are modified live vaccines (MLV) which induce only a partial protection against heterologous strains. In the case of the influenza virus, the available inactivated vaccines show the same weakness.With the goal to control emerging influenza and PRRSV variants, I evaluated vaccine strategies involving conserved viral antigens between strains which were targeted to antigen-presenting cells (APC) and delivered by different routes and methods.In the case of influenza virus, the targeting of conserved antigens (HA2, M2e and NP) to CD11c led to increased IFNγ T cell responses only when vaccines were delivered by the intramuscular (IM) route and had no effect on the humoral response. The intradermal route exacerbated disease following challenge whereas the IM route reduced the symptoms, the duration of viral excretion in correlation with higher anti-HA2 and anti-M2e antibody responses.In the case of PRRSV, which was my main subject, I sought to optimize the IFNγ T cell responses by using DNA vaccines encoding antigens with conserved T-epitopes between strains, and targeted to APC. Indeed, whereas viral mutants escape neutralizing antibodies, it has been proposed that the IFNγ T cell responses are instrumental for cross-protection. I showed that the broadest T cell responses were induced by DNA vaccines combined to nanoparticles PLGA (NP) injected by the intradermal route, followed by electroporation (EP) compared with EP-only, intradermal route-only or transcutaneous dissolvable microneedles. This optimal immunogenicity was associated with a high transfection level of skin cells, an accumulation of inflammatory cells, and dendritic cells mobilisation. Next I used the EP+NP method to immunize pigs with plasmids encoding conserved PRRSV antigens targeted or not to APC via CD11c or XCR1. Pigs were immunized either with repeated injections of DNA alone or with a prime-boost DNA-MLV. The DNA-MLV regimen induced improved humoral and IFNγ T cell responses compared to DNA alone or MLV alone and the APC-targeting significantly increased the humoral response but not the IFNγ T cell response. Finally, I evaluated the DNA-MLV regimen efficacy, with an applied perspective, using naked DNA without NP and delivered by EP or by a convenient needle free injection technology (PJ). In these conditions, the DNA prime did not significantly increase the IFNγ T cell response induced by the MLV, but clearly increased the humoral response with a benefit of the APC-targeting. However, the immune potentiation induced by the DNA prime did not lead to an improved protection following a heterologous challenge. The heterologous protection was not correlated to the measured humoral and IFNγ T cell responses, and neutralizing antibodies were undetectable. Thus cross-protective effectors have not been sufficiently activated by our DNA-MLV strategy and the immune correlates of protection against heterologous PRRSV are still to be identified to develop cross-protective vaccines. Finally, this work shows that the effect of APC-targeting in pigs is influenced by delivery routes and methods and by vaccine regimen such as the prime-boost DNA-MLV
Pliquet, Élodie. „Développement d’immunothérapies contre l’antigène de tumeur universel hTERT basées sur différentes stratégies vaccinales“. Electronic Thesis or Diss., Paris 6, 2015. http://www.theses.fr/2015PA066747.
Der volle Inhalt der QuelleCancer is one of the main causes of morbidity and mortality worldwide. Studies of the cancer process have highlighted specific interactions between tumor and adaptive immune system. Following their malignant transformation, cancer cells express tumor antigens which are recognized by T cells. This foundation is the basis of immunotherapy strategies targeting tumor associated-antigens (TAA). Among all identified TAAs, hTERT appears as a universal antigen which is also involved in oncogenesis and is overexpressed in 80 to 90% of cancer regardless of their histological origin. The hTERT specific immune response found in healthy volunteers and in cancer patients suggests a preexisting hTERT specific T repertoire and a natural break down of tolerance. In view of this, we focused our vaccine strategy on this TAA. During this PhD, immunotherapy strategies were developed based on different constructions which encoded modified inactive forms of hTERT. Firstly, we developed therapeutic DNA vaccines optimized both in nucleotide and amino acid sequence and for their delivery route. Nucleic or protein sequences were deleted or shuffled while retaining the predicted immunogenic parts of hTERT. A specific and safe electrogene transfer procedure has been established in order to deliver efficiently DNA vaccine in the dermis. Secondly with the aim of boosting vaccination to increase DNA immunogenicity, or to develop a derivative, a live-attenuated measles vaccine strains recombinant for hTERT was designed. For all constructs, we demonstrated the induction of specific hTERT immune responses which present cytolytic strength in vivo in wild-type or HLA transgenic mice. We also demonstrated the anti-tumor effect of Invectys’ first clinical product
Nzonza, Angella. „Utilisation d'un rhabdovirus de poisson pour la mise en place d'une nouvelle plateforme vaccinale : exemple du virus West Nile (VWN)“. Paris 7, 2013. http://www.theses.fr/2013PA077208.
Der volle Inhalt der QuelleWest Nile Virus (WNV) is an arbovirus that can cause disease in mammals including humans and horses. There is no specific treatment or vaccines for WNV in humans. Our study aims at developing a WNV vectored vaccine which consists in using a fish Novirhabdovirus vector: the Viral Hemorrhagic Septicemia virus (VHSV). VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures. A reverse genetics system has recently been developed for VHSV allowing the addition of genes in the viral genome and the generation of the respective recombinant viruses rVHSVs. We have generated rVHSV vectors bearing on the one hand the complete WNV envelope gene (EwNv) (rVHSV-EwNv and rVHSV-EwNΔtm) or deleted of his transmembrane domain and on the other hand, fragments encoding E subdomains (either domain III alone or fused to domain II) (rVHSV-DJIIwNv and rVHSV-DIIDIIIwNv, respectively) in the VHSV genome. With the objective to enhance the targeting of the EwNv protein or EwNv-derived domains to the surface of VHSV virions, Novirhabdovirus G-derived signal peptide and transmembrane domain (SPG and TMG) were fused to EwNv at its amino and carboxy termini, respectively. We demonstrated that both the EWNV and the DIIIwnv could be expressed at the viral surface of rVHSV upon addition of SPG. Constructs expressing EwNv fused to SPG protected mice against WNV lethal challenge and specifically rVHSV-SPGEwNv induced a neutralizing antibody response that correlated with protection. Surprisingly, rVHSV expressing EwNv-derived domain III or II and III were unable to protect mice against WNV challenge, although these domains were highly expressed at the viral surface
Gravier, Rodolphe. „Biosécurité de la vaccination à ADN plasmidique chez le porc : prise en main du modèle (par étude de l’amélioration des voies vaccinales) et étude de la biodistribution et de la pharmacocinétique des plasmides“. Rennes 1, 2007. http://www.theses.fr/2007REN1S054.
Der volle Inhalt der QuelleFor several years, our laboratory has been involved in the study of DNA vaccination against pseudorabies virus (PRV), the etiological agent of Aujeszky’s disease in pigs. This technique consist in injecting pigs by deep intramuscular way with a mix of three plasmids encoding the three major PRV glycoproteins gB, gC and gD (PRV-pcDNA3 vaccine). My work was first to handle our vaccination model by looking if N-terminal fusion of ubiquitin to the three PRV glycoproteins (Ubi-PRV-pcDNA3 vaccine) could enhance protection compared to the DNA vaccine encoding the three native glycoproteins (PRV-pcDNA3). Secondly, we studied the tissue distribution and performed a preliminary pharmacokinetic study about each plasmid of the PRV-pcDNA3 vaccine
Hervé, Maxime. „La glutathion S-transférase de 28kDa du schistosome : une enzime candidat vaccinal à l'interface des relations entre le parasite et le système immunitaire“. Lille 2, 2002. http://www.theses.fr/2002LIL2MT11.
Der volle Inhalt der QuelleBruffaerts, Nicolas. „Preclinical studies on a new strategy combining the Bacillus of Calmette-Guérin with plasmid DNA-based subunit vaccines against tuberculosis“. Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209082.
Der volle Inhalt der QuelleLe présent travail a eu pour but principal d’étudier une nouvelle approche de vaccination combinant le Bacille de Calmette-Guérin avec des vaccins sous-unitaires à ADN plasmidique dans différents modèles précliniques.
Plusieurs hypothèses tentent d’expliquer la faible efficacité du vaccin BCG, comme la faible induction de réponses immunitaires de type cellulaire T CD8+, le déclin de l’immunité protectrice induite au cours du temps, ou son répertoire antigénique limité. Les vaccins à ADN plasmidique induisant de telles réponses, le travail proposé a consisté au développement d’un nouveau protocole de vaccination basé sur la coadministration par la voie intradermique du vaccin BCG formulé avec un vaccin à ADN plasmidique codant pour un antigène mycobactérien. Nous avons observé dans plusieurs modèles murins (adulte et néonatal) une augmentation significative des réponses cellulaires de type CD4+ Th1 et CD8+, ainsi que de la réponse humorale spécifique. L’immunogénicité de cette approche a également été analysée dans un modèle animal de grande taille, à savoir le modèle porcin. Les résultats obtenus indiquent que les vaccins à ADN plasmidique sont capables d’augmenter les réponses spécifiques à l’antigène codé par le plasmide mais également celles spécifiques à d’autres antigènes exprimés par le vaccin BCG. Enfin, dans la deuxième partie du travail, nous avons développé des vaccins plasmidiques codant pour des combinaisons d’antigènes phase-spécifiques de M. tuberculosis et nous avons analysé leur immunogénicité en modèle murin.
En conclusion, nous avons montré que la stratégie de coadministration par la voie intradermique du vaccin BCG avec un vaccin à ADN plasmidique encodant des antigènes mycobactériens s’avère être un protocole de vaccination réaliste et efficace pour améliorer l’immunité induite par le vaccin BCG. Elle offre par ailleurs des perspectives pour être appliquée avec des plasmides codant pour des antigènes caractéristiques de la tuberculose latente, peu reconnus après vaccination BCG, pour protéger à la fois contre la tuberculose active d’une primo-infection et contre la réactivation d’une infection latente.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Adam, Lucille. „Dynamique de la réponse immunitaire précoce mise en place localement suite à l’injection d’un vaccin ADN associée à une électroporation chez le macaque cynomolgus“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114812/document.
Der volle Inhalt der QuelleMechanisms involved in early vaccine response are poorly understood. However, more and more studies show the importance of innate immunity in the very early times following vaccine administration in the generation of an optimal specific immune response. Skin is an interesting target for vaccine delivery because of its richness in antigen presenting cells (APC) which are essential cells in immune responses. The intradermal delivery of auxoGTU DNA vaccine was shown to induce strong and persistent immune responses, especially in association with electroporation in cynomolgus macaque. The aim of this work was to characterize the early local immune responses followed intradermal auxoGTU DNA vaccination in association with EP in cynomolgus macaque. In a first step, we have described immune cell populations present in the normal skin in the cynomolgus macaques. The epidermis contains CD1a+CD1c- Langerhans cells (LCs), and CD3+ T cells. The dermis contains CD1a+CD1c- cells, which present similarities with LCs and probably correspond to LC in migration through dermis. It also contains CD1a+CD1c+ dermal dendritic cells (DDCs), CD163highCD11b+ resident macrophages, and CD3+ T cells. We found CD66+ polymorphonuclear cells in healthy dermis in some of the animals. Immune cell populations in the macaque are similar to those in humans despite moderate differences in phenotype. This characterization has allowed us to study the impact of vaccination on immune populations of the skin. We have demonstrated a recruitment of granulocytes and inflammatory monocytes/macrophages in epidermis and dermis, as well as a population of inflammatory dendritic epithelial cell (IDEC) in epidermis after vaccination. In epidermis, 24h after treatment, we have observed an initial increase of LC with an up-regulation of HLA-DR, CD86 and CD83, demonstrating their maturation. Between 24h and 72h, LC number decreased, suggesting that mature LC has leaved epidermis to migrate to skin draining lymph node. All these cellular events were almost due to EP process, independently of DNA vaccine presence. The skin microenvironment reveals a release of pro-inflammatory soluble factors, as MCP-1, IL-18, IL-15, IL-8 and anti-inflammatory mediators as IL-1RA and sCD40L by 24h, all considerably enhanced in the presence of DNA.Our results suggest that EP, independently of the presence of DNA, is sufficient to induce cells mobilization and DC maturation at the vaccinated site, suggesting an important adjuvant effect of EP. However, it seems that DNA is required to generate a favorable microenvironment essential for correct APC activation. This work provides important clues to local inflammation mechanisms and opens up new possibilities for vaccine strategies
El, Mir Samir. „Lag-3 (cd223) : un ligand du CMH de classe II utilisé comme immuno-adjuvant de vaccination chez la souris“. Paris 11, 2002. http://www.theses.fr/2002PA11T005.
Der volle Inhalt der QuelleRochard, Alice. „Immunisation génétique par électroporation intramusculaire d'ADN plasmidique pour la production d'anticorps neutralisant la toxine botulique de type B“. Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066711.
Der volle Inhalt der QuelleBotulinum neurotoxins (BoNT) have been characterized to be the most potent toxic substances identified so far. Passive immunization with antiBoNT antisera is the only treatment for botulism to have gained FDA approval. We have previously shown that genetic immunization by the non-viral intramuscular DNA electroporation technique is an effective alternative to recombinant proteins immunization to raise high titer neutralizing antibodies against BoNT serotype A and E. The neutralizing titers obtained were high enough to fit the European Pharmacopeia while it did not for type B, commonly linked to human disease as well. Finding out why BoNT/B immunogenicity is low after DNA vaccination and how we could improve it for generation of high-titer neutralizing antiBoNT/B antiserum were the two main goals of my work. Combining different approaches, we have first shown that BoNT/B antigen secretion was inhibited, while it did not for BoNT/A. We identified the endoplasmic reticulum to be the organelle of retention. Then, we studied an empirical link between BoNT/B antigenic protein sequence and intracellular accumulation. We concluded that protein misfolding could be the reason for BoNT/B retention in the endoplasmic reticulum. Among different strategies tested to improve BoNT/B immunogenicity in DNA vaccination, addition of N-glycosylation sites yielded 10 fold higher neutralizing antibodies titers. Finally, bile salts could be promising adjuvants for plasmid DNA vaccines
Todorova, Biliana. „Imagerie in vivo de la réponse immune locale à la vaccination par voie intradermique à l’aide d’un ADN plasmidique associée à l’électroporation chez le macaque cynomolgus“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA114837.
Der volle Inhalt der QuelleIn vivo electroporation (EP) is used as a strategy to improve the immune response induced by DNA vaccines. However, its local effect on the innate immune cells has not been fully described. We developed in vivo fluorescence imaging approaches to highlight the cell behavior in the site of vaccination in macaques. Our results show that the local EP not only increases the amount and the distribution of the vaccine antigen, but also induces the mobilization and migration of Langerhans cells. Furthermore, EP causes the recruitment of leukocytes into the skin and subcutaneous tissue and promotes the production of pro-inflammatory cytokines. These early events that result from the use of the EP as a delivery system for DNA vaccines, highlight its potential as a vaccine adjuvant
Callendret, Benoît. „Conception et évaluation de différentes approches vaccinales contre le coronavirus associé au syndrome respiratoire aigu sévère“. Paris 7, 2006. http://www.theses.fr/2006PA077222.
Der volle Inhalt der QuelleSevere acute respiratory syndrome associated coronavirus (SARS-CoV) emerged in late 2002 and caused an epidemic of atypic pneumonia in humans. Here, we describe three vaccine candidates designed to induce neutralizing antibodies against the viral S glycoprotein, which are the main effectors of the protective immune response. We demonstrated that efficient expression of S gene in mammalian cell lines required the use of optimized vectors containing an intron and post-transcriptional regulatory elements such as WPRE and CTE. Upon immunization of mice with low doses of naked DNA, only intron and WPRE-containing vectors were able to provide protection against challenge with SARS-CoV. We also established stable cell lines constitutively secreting a soluble form of the S protein (Ssol). The immunogenicity of purified Ssol was studied in mouse and hamster models. Two injections of the Ssol polypeptide adjuvanted with Alum induced a strong and long-lasting Th2 immune response comprising high levels of SARS-CoV-neutralizing antibodies. Upon intranasal challenge with SARS-CoV, virus replication was strongly reduced in the lungs of immunized animals and hamsters were protected from the occurrence of lesions in the respiratory tract. Moreover, the use of two new adjuvants developed by GlaxoSmithKline Biologicals further increased the anti-S humoral response and the Thl component of the immune response. Concurrently, we developed HIV-based lentiviral vectors expressing the full-length S protein as an alternate SARS vaccine candidate. In the hamster model, a single injection of these vectors induced a neutralizing antibody response similar to that induced by two injections of Ssol
Chrun, Tiphany. „Développement d’un vaccin à ADN optimisé contre le virus de la fièvre de la vallée du Rift chez le mouton“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLA004/document.
Der volle Inhalt der QuelleThe Rift valley fever virus (RVFV) is a mosquito-borne virus that mainly affect ruminants in Africa, resulting in economic burden. There is currently no treatment and only vaccine for veterinary use against the RVFV are available. The development of new and safer vaccine is urgently needed due to the risk of introduction of this arbovirus to other continents. In the present work, we developed an optimized DNA vaccination against RVFV using a plasmid encoding the ectodomain of surface glycoprotein Gn (eGn) of RVFV into the skin with plasmid adjuvant encoding GM-CSF and electroporation in sheep. We further optimized the DNA vaccination using dendritic cell targeting strategy with a plasmid encoding a single chain fragment variable (scFv) fused with eGn directed to two DC receptors, DEC205 and CD11c. The efficacy of the vaccines were tested in the sheep, the natural host and in the mouse model to investigate the mechanism of protection. In both models non-targeted eGn vaccine confer a better clinical protection and higher non-neutralizing antibody production than DC-targeted vaccine. However, in both models eGn targeting to DEC205 differentially affected the immune response and induced a partial protection after a challenge. We further demonstrated that non-neutralizing antibodies induced by native eGn protect mice by passive transfer. The mechanism mediated by these antibodies remains to be investigated. Overall, this work indicates the proof of concept that DNA vaccine can confer protection against the RVFV in the sheep
Keita, Djénéba. „Utilisation de l’interférence ARN pour l’inactivation post-transcriptionnelle de gènes viraux et le contrôle de la réplication de deux virus animaux in vitro : Morbillivirus (ARN) et Peste Porcine Africaine (ADN)“. Montpellier 2, 2008. http://www.theses.fr/2008MON20163.
Der volle Inhalt der QuelleThis work aimed at using the mechanism of RNA interference for the in vitro control of the replication of RNA (Morbillivirus) and DNA viruses (Asfivirus). By bioinformatics and in vitro biological approaches measuring the inhibition of the replication of these viruses in cell culture, target genes and active siRNA were identified. Morbillivirus genus includes important pathogens of human and animals. They include measles virus, peste des petits ruminants virus and rinderpest virus. Nucleoprotein (N) plays an essential role in transcription and replication of Morbilliviruses, therefore we defined siRNA targeting the conserved sequences as defined by multiple alignment of the N gene of these viruses. In the case of the DNA virus studied, African swine fever virus, the objective was determining the role in the viral replication, of four genes present in an area having to be deleted for the carefully thought out attenuation of the virus. . For countries facing these extremely contagious viral diseases, the development of therapeutic vaccines based on siRNA interference is a major progress for animal health, especially for African swine fever against which there is not yet vaccine and having the potential to open the door on new control strategies
Mirabelli, Carmen. „Exploring viral-host interactions during poliovirus infection : study of the role of the 3A cellular partners, ACBD3 and CREB3, in viral replication and cell signaling“. Sorbonne Paris Cité, 2015. http://www.theses.fr/2015USPCC128.
Der volle Inhalt der QuellePoliovirus (PV) is a prototype member of the giant family of RNA+ single stranded virus, Picornaviridae, and it is the etiologic agent of poliomyelitis. Although PV has been studied sine 1949, the molecular virology of this virus has not been fully elucidated. The global vaccination campaign led to the complete eradication of PV in Europe and America and the virus remains endemic only in Nigeria, Afghanistan and Pakistan. Therefore, PV does not constitute a heath burden and a research priority anymore, but it still remains a captivating model of study. In addition, the externe plasticity of this virus together with sub-optimal vaccine coverage in some regions of the world permitted the emergence of new PV-derived pathogenic neurovirulent strains (VDPVs). In particular, these strains originate from the genetic drift of the attenuated oral poliovaccine (OPV) and episodes of genetic recombination with co-circulating enteroviruses (EV) of species C, in particular with the Coxsackievirus A17 (CV-A17). My thesis project focuses on the study of viral-host interaction during PV infection in order to : Propose mechanisms of emergence and selection of recombinant VDPVs Characterize new signaling modules interacting with PV Identify new cellular targets for the development of new PV antivirals, necessary during the post-eradication period The, analysis of the interaction maps of the non-structural protein 3A allowed us to identify new cellular partners: -ACBD3 Golgi-resident protein maintaining the structure of the Golgi organelle -CREB3 transcription factor involved in endoplasmic reticulum (ER) stress In this study, we showed that ACBD3 restricts viral replication and its effect depends on the nature of viral protein 3A. Indeed, the acquisition of a 3A derived from CV-A17 is beneficial for the replication of the recombinant virus, which is less sensitive to the inhibitory effect of ACBD3 (Téoulé F. Et al, Journal of virology 2013). CREB3 is an ER-stress induced transcription factor. One of its targets is the Herp protein, involved in ER calcium (Ca2±) homeostasis via the degradation of the ER-resident Ca2+ channels. During PV infection, a Ca2+ flux from the ER has been reported at late times post infection. In this study, we showed that the signaling module CREB3/Herp, activated at early times post infection, limits Ca2+ flux and PV-induced apoptosis. We provided evidences that PV activates an ER-stress response but modifies its outcome (cell apoptosis) to assist viral replication. Moreover, the anti-apoptotic pathway CREB3/Herp could limit viral-induced damages of the central nervous system. In addition, the study of CREB3 allowed us to identify a target for antiviral therapy: the regulated intramembrane proteolysis (RIP) pathway. We tested an inhibitor of the RIP, originally developed for HIV-1 as a protease inhibitor, Nelfinavir (NFV). Here, we reported the antiviral activity of NFV in vitro against PV and a panel of enteoviruses. Altogether, these results support the interest in studying viral-host interactions to deepen the fundamental knowledge on the molecular virology and pathogenesis of the virus, study new mechanisms of viral emergence and eventually identify new strategies to combat viral infections
Rashid, Muhammad Imran. „RON4 et ROP18 deux protéines de rhoptries de Toxoplasma gondii candidats vaccins ? : Etude dans un modèle de toxoplasmose chronique chez la souris“. Thesis, Tours, 2011. http://www.theses.fr/2011TOUR3804.
Der volle Inhalt der QuelleToxoplasma gondii, an obligate intracellular protozoan, is the etiologic agent of toxoplasmosis. This infection has severe consequences during cerebral or congenital toxoplasmosis both in human and veterinary medicines. No vaccine is currently available, so the design of efficient vaccine strategies is still a topical question. In this study, RON4 and ROP18, two rhoptry proteins of T. gondii which are discharged into the host cell at the invasion site, immediately following intimate contact with the host cell, were evaluated in two vaccine strategies against chronic infection in mice: DNA vaccination by the intramuscular route and recombinant protein vaccination by the nasal route. DNA immunization with optimized plasmids encoding full length RON4, or only the N-terminal, or the C-terminal part of RON4 plus a plasmid encoding the adjuvant GM-CSF or nasal immunization with a recombinant RON4 protein plus cholera toxin induced systemic humoral and cellular responses (mixed Th1/Th2) but failed to confer protection. Strategies intended to enhance the immunogenicity of RON4 by the nasal route and to enhance the Th1 immune response against RON4 could be more effective.DNA immunization with ROP18 expressed as a secreted or a cytosolic form by bicistronic vectors which encode both the antigen and the adjuvant GM-CSF induced similar humoral and cellular (Th1) responses but did not confer significant protection. Co-administration of a plasmid encoding the adjuvant IL-12 did not enhance the immune responses before challenge but was able to prime a cellular immune response that was boosted by the parasite infection. Nasal immunization with a recombinant ROP18 protein plus cholera toxin induced systemic humoral responses (mixed Th1/Th2) and conferred partial protection (50% brain cysts reduction). Co-administration of the adjuvant poly I:C enhanced the cellular response but did not potentiate the protection. Our data suggest that ROP18 is a potential vaccine candidate against toxoplasmosis. Strategies to improve the protective effect of ROP18 should be investigated
Vidalin, Olivier. „Étude de l'immunogénicité des protéines structurales du virus de l'hépatite C par le biais de vaccinations génétiques“. Lyon 1, 1999. http://www.theses.fr/1999LYO1T311.
Der volle Inhalt der QuelleGuerenne, Laura. „Validation de modèles précliniques de transformation de Syndrome Myélodysplasique en Leucémie Aiguë Myéloide et application à l'étude de nouvelles thérapies“. Paris 7, 2014. http://www.theses.fr/2014PA077116.
Der volle Inhalt der QuelleMyelodysplastic syndromes (MDS) are a heterogeneous group of clonai hematopoietic stem tell diseases characterized by dysplasia in the myeloid lineage. 40% of MDS patients evolve to an acute myeloid leukemia (AML). The study of animal models provides an opportunity to better understand the myeloid leukemogenesis. It is also the starting point for the development of nevi therapies to better treat patients with MDS and AML post a SMD. We conducted a large-scale genomic screening by DNA chip to obtain the gene expression profile of two transgenic mouse models of MDS and AML post MDS. These profiles were compared with the gene expression profile of patients in order to highlight their relevance to the study of MDS and AML post SMD. These analyses showed similarities between expression profiles of patient and mouse models and have shown alterations in expression of genes involved in cellular functions described as yet little involved in the development of the disease. We also assessed the efficacy of a DNA nonspecific vaccine, the pVAX14, and a molecule which inhibite proteins BH3 domain. ABT-737 has an effect on anti-apoptotic BCL-2 proteins family. In a mouse model of transplantable LAP and transgenic mouse model of high-risk MDS, vaccinatior with pVAX14 increase mice survival and activate the immune response as it was already shown in the LAP mouse model with a specific vaccine expressing PML-RAR alpha antigen. These results suggest a use "generic" pVAX14 to treat other types of cancer or haematological malignancies. ABT-737 improves the survival in the transgenic mouse model of high-risk MDS and target leukemia initiating cells and primitive progenitor cells, by regulating the tell cycle, differentiation, and apoptosis
Vignes, Caroline. „Étude du rôle de la réponse T dans le rejet et la tolérance d'allogreffe : ciblage de la réponse T par vaccination anti-TCR avec de l'ADN nu“. Lyon 1, 1999. http://www.theses.fr/1999LYO1T131.
Der volle Inhalt der QuelleJayaraj, Ramamoorthi, und Jayaraj@menzies edu au. „Expression of stage-specific Fasciola proteases and their evaluation in vaccination trials“. RMIT University. Applied Science, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20081029.100156.
Der volle Inhalt der QuelleBaynam, Gareth. „Genetic influences on vaccine response in children“. University of Western Australia. School of Paediatrics and Child Health, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0259.
Der volle Inhalt der QuelleSaxena, Manvendra, und s3031657@student rmit edu au. „Utilising salmonella to deliver heterologous vaccine antigen“. RMIT University. Applied Sciences, 2007. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080522.095907.
Der volle Inhalt der QuelleTaylor, Kim, und kim taylor@y7mail com. „Evaluation of the vaccine potential of malarial TCTP“. RMIT University. Applied Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091020.112823.
Der volle Inhalt der Quelleau, w. ditcham@murdoch edu, und William Ditcham. „The development of recombinant vaccines against Jembrana disease“. Murdoch University, 2007. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20071119.94111.
Der volle Inhalt der QuelleSaade, Fadi. „Évaluation de nouvelles combinaisons immunothérapeutiques à base du vaccin à ADN nu pour le traitement des hépatites B chroniques“. Lyon 1, 2008. http://www.theses.fr/2008LYO10047.
Der volle Inhalt der QuelleIn spite of the availability of an efficient prophylactic vaccine, hepatitis B virus (HBV) infection remains a major public health problem and a therapeutic challenge. DNA-based vaccine is a promising strategy for chronic HBV infections treatment, although it is crucial to improve its efficacy. The aim of this work was to assess the therapeutic benefits of co-administration of cytokine genes (IL-2, IFN-γ) with plasmids expressing DHBV proteins, using the duck HBV (DHBV) infection model, closely related to the human virus. In a 1st study, we explored first in naïve ducks, the impact co-delivery of IFN-γ or IL-2 encoding plasmids (pCI-IFNγ, pCI-IL2 respectively) on humoral neutralizing response induced by DNA-based vaccine encoding DHBV preS/S large envelope protein (pCI-preS/S). Co-delivery of either pCI-IL2 or pCI-IFNγ considerably increased the magnitude and the neutralizing efficacy of anti-preS humoral response, as compared to duck group immunized with pCI-preS/S alone. In a 2nd study, therapeutic efficacy was tested in chronic-DHBV carrier ducks receiving envelope and capsid expressing plasmids (pCI-preS/S, pCI-C) alone or in co-immunization with pCI-IFN or pCI-IL2 plasmids. Co-delivery of pCI-IFNγ led to a significantly lower mean viremia, associated with seroconversion to higher anti-preS titers (P< 0. 05) compared to other groups. Moreover, liver DHBV DNA, including cccDNA, was undetectable by conventional methods for 25% and 57% of animals co-immunized with IL-2 and IFN-γ, respectively. Inoculation of liver homogenates from 7 resolved animals, presenting cccDNA detectable by real-time PCR only, showed absence of infectivity for 4, however 3 induced high titer viremia in neonatal ducklings, associated with evidence of intrahepatic preS expression for two animals. In a 3rd study, we realized and validated different constructs of recombinant avian adenovirus "CELO" (Chicken Embryo Lethal Orphin) expressing the preS/S and IFN-γ proteins respectively. We determined the optimal administration route of these vectors which allowed induction of highest anti-preS antibody response. This optimization allowed us to initiate a prime-boost therapeutic protocol, associating a prime with naked DNA vaccine targeting DHBV large envelope protein, followed by boosts with recombinant adenovirus CELO expressing this protein alone or in combination with IFN-γ. In conclusion, co-delivery of IFN-γ plasmid enhanced therapeutic efficacy of DHBV DNA vaccine in terms of break of humoral immune tolerance and viral clearance. These results are of particular value for the development of DNA vaccine-based immunotherapy for HBV-chronic carriers
Xue, Lumin, und Lumin Xue@csl com au. „Immunological studies of cold-adapted influenza vaccine viruses in mice“. RMIT University. Applied Sciences, 2009. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20091027.101804.
Der volle Inhalt der QuelleWilson, Sarah, und n/a. „Vaccine peptide delivery by virus particles“. University of Otago. Department of Microbiology & Immunology, 2007. http://adt.otago.ac.nz./public/adt-NZDU20080131.161222.
Der volle Inhalt der QuelleMacedo, Gonzales Rodney. „Development of therapeutic vaccine strategies and pre-clinical animal tumor models for head and neck cancers“. Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066269/document.
Der volle Inhalt der QuelleHead and neck squamous cell cancer (HNSCC) associated with alcohol and tobacco consumption, and recently with human papillomavirus-16 (HPV-16), have bad prognosis despite current therapies. Development of innovative vaccine strategies and adequate pre-clinical tumor models are required to better evaluate HNSCCs. We developed a DNA vaccination that creates non-infectious virus-like particles, which express HPV-16 E7 oncoprotein (pVLP-E7). Results showed that pVLP-E7 induced an E7-specific immune response in vivo and in vitro. Moreover, using an ectopic model of HNSCC that expresses E6/E7 (TC-1), we found that pVLP-E7 intradermic (ID) immunizations induced anti-tumoral responses at early stages. For larger established tumors, pVLP-E7 vaccines were only efficient when administered with TLR-7 and TLR-9 agonists. In an orthotopic model that shares anatomical and inflammatory features with human HNSCC we observed that intra-cheek (IC) infusion of either TC-1 or NR-S1 cells into mice elicited higher numbers of inflammatory infiltrates in the tumor compared to ectopic models. Using this orthotopic IC model, we found that mucosal IC pVLP-E7 vaccination elicited better vaccine-specific CD8+ T-cell responses than ID administration in naive and tumor-bearing mice. Furthermore, pVLP-E7 IC immunizations in combination with TLR agonists led to rejection of established tumors and long-term protection, both of which were associated with E7-specific CD8+ T cell infiltration in tumors and lymph nodes. Our findings demonstrate that pVLP-E7 IC vaccination with adjuvants is efficient against these tumor models and together provides a valuable therapeutic strategy for HNSCCs
Fontoura, Paulo Pacheco da. „Terapêuticas antigénio-especificas no tratamento das doenças desmielinizantes: estudos sobre a vacinação com ADN e a descoberta de um novo alvo antigénico“. Doctoral thesis, Faculdade de Ciências Médicas. Universidade Nova de Lisboa, 2008. http://hdl.handle.net/10362/5202.
Der volle Inhalt der QuelleTyrer, Peter Charles, und n/a. „Targeting M-cells for oral vaccine delivery“. University of Canberra. Health Sciences, 2004. http://erl.canberra.edu.au./public/adt-AUC20060427.122012.
Der volle Inhalt der QuelleAudsley, Jennifer M., und jennifer audsley@med monash edu au. „Alternative Approaches In The Preparation And Growth Of Influenza B Vaccine Viruses“. RMIT University. Applied Sciences, 2008. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20080414.141937.
Der volle Inhalt der Quellecom, movahedi ar@gmail, und Abdolreza Movahedi. „A reverse vaccinology approach to identifying subunit proteins for use in vaccines against Brachyspira pilosicoli infections in humans and animals“. Murdoch University, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20090318.140633.
Der volle Inhalt der QuelleShan, Songhua. „Development and evaluation of DNA vaccines in chickens against a wild bird H6N2 avian influenza virus from Western Australia /“. Murdoch University Digital Theses Program, 2009. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20100211.201257.
Der volle Inhalt der QuelleLendemans, Dirk G., und n/a. „Novel cationic preparations of iscoms as vaccine carriers“. University of Otago. School of Pharmacy, 2006. http://adt.otago.ac.nz./public/adt-NZDU20060810.141916.
Der volle Inhalt der QuelleWhite, Karen Louise, und n/a. „Modified liposomes as adjuvants“. University of Otago. School of Pharmacy, 2005. http://adt.otago.ac.nz./public/adt-NZDU20070126.131417.
Der volle Inhalt der Quellecom, tickle_me_patty@hotmail, und Patrick Leslie Shearer. „Development of Novel Diagnostic and Vaccine Options for Beak and Feather Disease Virus“. Murdoch University, 2009. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20090720.142800.
Der volle Inhalt der QuelleLauer, Katharina. „A multipathogen vaccine for rabies, hepatitis B, Japanese encephalitis and enterovirus 71“. Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/a-multipathogen-vaccine-for-rabies-hepatitis-b-japanese-encephalitis-and-enterovirus-71(f489f961-317e-4430-becc-0474cae79268).html.
Der volle Inhalt der QuelleDalba, Charlotte. „Nouveaux vecteurs rétroviraux pour l'immunothérapie des cancers et des infections virales“. Paris 6, 2006. http://www.theses.fr/2006PA066604.
Der volle Inhalt der QuelleReplication defective retroviral (RDR) vectors based on murine oncoretroviruses marked history by being the gene transfer vectors used in the first successful gene therapies. Despite this achievement, they have two major drawbacks: insufficient efficacy for in vivo gene transfer and insertional mutagenesis. During the course of the work presented here, we attempted to overcome these problems while making vectors useful for two different indications; cancer and infectious disease. This led to the conceptualization, realization and evaluation of two retroviral vector designs of principally opposite character; (i) replication competent retroviral (RCR) vectors transducing largely complete genomes and (ii) genome free virus-like particle (VLP) vectors. Our work illustrates that the versatility of retroviral vectors, which permits inventive designs, make them major actors in gene therapy and genetic vaccines
Holden, James Anthony, und jamesholden@netspace net au. „Vaccination Strategies for the Prevention of Swine Dysentery“. RMIT University. Applied Sciences, 2006. http://adt.lib.rmit.edu.au/adt/public/adt-VIT20070112.122102.
Der volle Inhalt der Quelleau, T. La@murdoch edu, und Tom La. „Characterisation, Recombinant Expression and Immunogenicity of BHLP29.7, An Outer Membrane Lipoprotein of Brachyspira Hyodysenteriae“. Murdoch University, 2006. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20070830.141953.
Der volle Inhalt der QuelleGiles, Natalie Lydia. „Exploitation of the protein tubulin for controlling African trypanosomiasis /“. Access via Murdoch University Digital Theses Project, 2005. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20060315.191003.
Der volle Inhalt der QuelleShearer, Patrick. „Development of novel diagnostic and vaccine options for beak and feather disease virus (BFDV) /“. Murdoch University Digital Theses Program, 2008. http://wwwlib.murdoch.edu.au/adt/browse/view/adt-MU20090720.142800.
Der volle Inhalt der QuelleContains three published journal articles at back of thesis. Thesis submitted to the Faculty of Health Sciences. Includes bibliographical references (leaves 196-231)