Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „User-Centered explanations“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "User-Centered explanations" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "User-Centered explanations"
Delaney, Eoin, Arjun Pakrashi, Derek Greene und Mark T. Keane. „Counterfactual Explanations for Misclassified Images: How Human and Machine Explanations Differ (Abstract Reprint)“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 20 (24.03.2024): 22696. http://dx.doi.org/10.1609/aaai.v38i20.30596.
Der volle Inhalt der QuelleHwang, Jeonghwan, Taeheon Lee, Honggu Lee und Seonjeong Byun. „A Clinical Decision Support System for Sleep Staging Tasks With Explanations From Artificial Intelligence: User-Centered Design and Evaluation Study“. Journal of Medical Internet Research 24, Nr. 1 (19.01.2022): e28659. http://dx.doi.org/10.2196/28659.
Der volle Inhalt der QuelleRong, Yao, Peizhu Qian, Vaibhav Unhelkar und Enkelejda Kasneci. „I-CEE: Tailoring Explanations of Image Classification Models to User Expertise“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 19 (24.03.2024): 21545–53. http://dx.doi.org/10.1609/aaai.v38i19.30152.
Der volle Inhalt der QuelleGuesmi, Mouadh, Mohamed Amine Chatti, Shoeb Joarder, Qurat Ul Ain, Clara Siepmann, Hoda Ghanbarzadeh und Rawaa Alatrash. „Justification vs. Transparency: Why and How Visual Explanations in a Scientific Literature Recommender System“. Information 14, Nr. 7 (14.07.2023): 401. http://dx.doi.org/10.3390/info14070401.
Der volle Inhalt der QuelleMorrison, Katelyn, Philipp Spitzer, Violet Turri, Michelle Feng, Niklas Kühl und Adam Perer. „The Impact of Imperfect XAI on Human-AI Decision-Making“. Proceedings of the ACM on Human-Computer Interaction 8, CSCW1 (17.04.2024): 1–39. http://dx.doi.org/10.1145/3641022.
Der volle Inhalt der QuelleShu, Derek, Catherine T. Xu, Somya Pandey, Virginia Walls, Kristen Tenney, Abby Georgilis, Lisa Melink, Danny T. Y. Wu und Jennifer Rose Molano. „User-centered Design and Formative Evaluation of a Web Application to Collect and Visualize Real-time Clinician Well-being Levels“. ACI Open 08, Nr. 01 (Januar 2024): e1-e9. http://dx.doi.org/10.1055/s-0044-1779698.
Der volle Inhalt der QuellePanchaud, Nadia H., und Lorenz Hurni. „Integrating Cartographic Knowledge Within a Geoportal: Interactions and Feedback in the User Interface“. Cartographic Perspectives, Nr. 89 (11.04.2018): 5–24. http://dx.doi.org/10.14714/cp89.1402.
Der volle Inhalt der QuelleZhang, Zhan, Daniel Citardi, Dakuo Wang, Yegin Genc, Juan Shan und Xiangmin Fan. „Patients’ perceptions of using artificial intelligence (AI)-based technology to comprehend radiology imaging data“. Health Informatics Journal 27, Nr. 2 (April 2021): 146045822110112. http://dx.doi.org/10.1177/14604582211011215.
Der volle Inhalt der QuellePasrija, Vatesh, und Supriya Pasrija. „Demystifying Recommendations: Transparency and Explainability in Recommendation Systems“. International Journal for Research in Applied Science and Engineering Technology 12, Nr. 2 (29.02.2024): 1376–83. http://dx.doi.org/10.22214/ijraset.2024.58541.
Der volle Inhalt der QuelleRobatto Simard, Simon, Michel Gamache und Philippe Doyon-Poulin. „Development and Usability Evaluation of VulcanH, a CMMS Prototype for Preventive and Predictive Maintenance of Mobile Mining Equipment“. Mining 4, Nr. 2 (09.05.2024): 326–51. http://dx.doi.org/10.3390/mining4020019.
Der volle Inhalt der QuelleDissertationen zum Thema "User-Centered explanations"
Lerouge, Mathieu. „Designing and generating user-centered explanations about solutions of a Workforce Scheduling and Routing Problem“. Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST174.
Der volle Inhalt der QuelleDecision support systems based on combinatorial optimization find application in various professional domains. However, decision-makers who use these systems often lack understanding of their underlying mathematical concepts and algorithmic principles. This knowledge gap can lead to skepticism and reluctance in accepting system-generated solutions, thereby eroding trust in the system. This thesis addresses this issue in the case of the Workforce Scheduling and Routing Problems (WSRP), a combinatorial optimization problem involving human resource allocation and routing decisions.First, we propose a framework that models the process for explaining solutions to the end-users of a WSRP-solving system while allowing to address a wide range of topics. End-users initiate the process by making observations about a solution and formulating questions related to these observations using predefined template texts. These questions may be of contrastive, scenario or counterfactual type. From a mathematical point of view, they basically amount to asking whether there exists a feasible and better solution in a given neighborhood of the current solution. Depending on the question types, this leads to the formulation of one or several decision problems and mathematical programs.Then, we develop a method for generating explanation texts of different types, with a high-level vocabulary adapted to the end-users. Our method relies on efficient algorithms for computing and extracting the relevant explanatory information and populates explanation template texts. Numerical experiments show that these algorithms have execution times that are mostly compatible with near-real-time use of explanations by end-users. Finally, we introduce a system design for structuring the interactions between our explanation-generation techniques and the end-users who receive the explanation texts. This system serves as a basis for a graphical-user-interface prototype which aims at demonstrating the practical applicability and potential benefits of our approach
Buchteile zum Thema "User-Centered explanations"
Chari, Shruthi, Oshani Seneviratne, Daniel M. Gruen, Morgan A. Foreman, Amar K. Das und Deborah L. McGuinness. „Explanation Ontology: A Model of Explanations for User-Centered AI“. In Lecture Notes in Computer Science, 228–43. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62466-8_15.
Der volle Inhalt der QuelleNovak, Jasminko, Tina Maljur und Kalina Drenska. „Transferring AI Explainability to User-Centered Explanations of Complex COVID-19 Information“. In Lecture Notes in Computer Science, 441–60. Cham: Springer Nature Switzerland, 2022. http://dx.doi.org/10.1007/978-3-031-21707-4_31.
Der volle Inhalt der QuelleOury, Jacob D., und Frank E. Ritter. „How User-Centered Design Supports Situation Awareness for Complex Interfaces“. In Human–Computer Interaction Series, 21–35. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-47775-2_2.
Der volle Inhalt der QuelleRabethge, Nico, und Franz Kummert. „Developing a Human-centred AI-based System to Assist Sorting Laundry“. In Informatik aktuell, 23–35. Wiesbaden: Springer Fachmedien Wiesbaden, 2024. http://dx.doi.org/10.1007/978-3-658-43705-3_3.
Der volle Inhalt der QuelleZho, Yan, Yaohua Chen und Yiyu Yao. „User-Centered Interactive Data Mining“. In Data Warehousing and Mining, 2051–66. IGI Global, 2008. http://dx.doi.org/10.4018/978-1-59904-951-9.ch122.
Der volle Inhalt der QuelleAng, Chee S., und Panayiotis Zaphiris. „Developing Enjoyable Second Language Learning Software Tools“. In User-Centered Computer Aided Language Learning, 1–21. IGI Global, 2006. http://dx.doi.org/10.4018/978-1-59140-750-8.ch001.
Der volle Inhalt der QuelleLee, Sangwon. „AI as an explanation agent and user-centered explanation interfaces for trust in AI-based systems“. In Human-Centered Artificial Intelligence, 91–102. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-85648-5.00014-1.
Der volle Inhalt der QuelleReis, Rosa, und Paula Escudeiro. „The Role of Virtual Worlds for Enhancing Student-Student Interaction in MOOCs“. In User-Centered Design Strategies for Massive Open Online Courses (MOOCs), 208–21. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9743-0.ch013.
Der volle Inhalt der QuelleMehrotra, Siddharth, Carolina Centeio Jorge, Catholijn M. Jonker und Myrthe L. Tielman. „Building Appropriate Trust in AI: The Significance of Integrity-Centered Explanations“. In Frontiers in Artificial Intelligence and Applications. IOS Press, 2023. http://dx.doi.org/10.3233/faia230121.
Der volle Inhalt der QuelleXia, Ziqing, Cherng En Lee, Chun-Hsien Chen, Jo-Yu Kuo und Kendrik Yan Hong Lim. „Mental States and Cognitive Performance Monitoring for User-Centered e-Learning System: A Case Study“. In Advances in Transdisciplinary Engineering. IOS Press, 2022. http://dx.doi.org/10.3233/atde220697.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "User-Centered explanations"
Brunotte, Wasja, Jakob Droste und Kurt Schneider. „Context, Content, Consent - How to Design User-Centered Privacy Explanations (S)“. In The 35th International Conference on Software Engineering and Knowledge Engineering. KSI Research Inc., 2023. http://dx.doi.org/10.18293/seke2023-032.
Der volle Inhalt der QuelleSimões-Marques, Mário, und Isabel L. Nunes. „Application of a User-Centered Design Approach to the Definition of a Knowledge Base Development Tool“. In Applied Human Factors and Ergonomics Conference (2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001259.
Der volle Inhalt der QuelleSilva, Ítallo, Leandro Marinho, Alan Said und Martijn C. Willemsen. „Leveraging ChatGPT for Automated Human-centered Explanations in Recommender Systems“. In IUI '24: 29th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3640543.3645171.
Der volle Inhalt der QuelleWang, Xinru. „Human-Centered Evaluation of Explanations in AI-Assisted Decision-Making“. In IUI '24: 29th International Conference on Intelligent User Interfaces. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3640544.3645239.
Der volle Inhalt der QuellePolignano, Marco, Giuseppe Colavito, Cataldo Musto, Marco de Gemmis und Giovanni Semeraro. „Lexicon Enriched Hybrid Hate Speech Detection with Human-Centered Explanations“. In UMAP '22: 30th ACM Conference on User Modeling, Adaptation and Personalization. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3511047.3537688.
Der volle Inhalt der QuelleNegrete Rojas, David, J. Carlos Rodriguez-Tenorio, Adrielly Nahomeé Ramos Álvarez, Alejandro C. Ramirez-Reivich, Ma Pilar Corona-Lira, Vicente Borja und Francisca Irene Soler Anguiano. „Enhancing Access to Water in Mexico City and Its Peri-Urban Area Through User Centered Design“. In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-72090.
Der volle Inhalt der QuelleCretu, Ioana, und Anca cristina Colibaba. „EQUAL CHANCES THROUGH UNEQUAL OPPORTUNITIES: FACILITATING LANGUAGE LEARNING AMONG STUDENTS IN MEDICINE, NURSING AND NUTRITION THROUGH ELEARNING“. In eLSE 2012. Editura Universitara, 2012. http://dx.doi.org/10.12753/2066-026x-12-076.
Der volle Inhalt der Quelle