Auswahl der wissenschaftlichen Literatur zum Thema „Urine Analysis“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Urine Analysis" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Urine Analysis"

1

Starcher, Barry, und Marti Scott. „Fractionation of Urine to Allow Desmosine Analysis by Radioimmunoassay“. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine 29, Nr. 1 (Januar 1992): 72–78. http://dx.doi.org/10.1177/000456329202900111.

Der volle Inhalt der Quelle
Annotation:
The present study was designed to re-evaluate the radioimmunoassay for desmosine in urine, which is currently used as a measure of elastin metabolism. Using ion exchange chromatography, gel filtration and affinity chromatography it was shown that at least five other compounds in hydrolysates of human urine competed for desmosine in the RIA. Fractionating the urine prior to hydrolysis with acetone removed one of the major contaminants. The other contaminants could subsequently be removed by extracting the urine hydrolysate with a mixture of chloroform/ethanol (60:40). Samples from nine normal adult urines showed that an average of 45% of the RIA competing material in unfractionated urine was not desmosine. The final extracted residue retained all of the desmosine and only 16% of the original solids. The average adult urine contains approximately 50 pmol desmosine/mg creatinine, reflecting a daily turnover of between 3 and 4 mg of elastin per day.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Örd, Lenna, Toomas Marandi, Marit Märk, Leonid Raidjuk, Jelena Kostjuk, Valdas Banys, Karit Krause und Marika Pikta. „Evaluation of DOAC Dipstick Test for Detecting Direct Oral Anticoagulants in Urine Compared with a Clinically Relevant Plasma Threshold Concentration“. Clinical and Applied Thrombosis/Hemostasis 28 (Januar 2022): 107602962210843. http://dx.doi.org/10.1177/10760296221084307.

Der volle Inhalt der Quelle
Annotation:
Measuring direct oral anticoagulant (DOAC) concentrations might be necessary in certain clinical situations but is not routinely performed. The DOAC Dipstick is a new rapid test for detecting DOACs in urine. The aim of this study was to evaluate the possible uses and limitations of the DOAC Dipstick and to compare visual analysis and DOASENSE Reader analysis of DOAC Dipstick pads. Plasma and urine samples were collected from 23 patients taking DOACs. DOAC concentrations in plasma and urine were measured by chromogenic substrate assays and in urine also by the DOAC Dipstick. Plasma concentrations were dichotomized at a threshold of ≥30 ng/mL. Patient samples were compared with samples from control individuals not using anticoagulants (n = 10) and with DOASENSE control urines. The Combur-10 test was used to measure parameters that may affect urine color and hence the interpretation of the DOAC Dipstick result. DOAC Dipstick test results were positive in 21/23 patient urine samples at a plasma DOAC concentration of ≥30 ng/mL and in 2/23 patient urine samples at a plasma DOAC concentration of <30 ng/mL. Inter-observer agreement was above 90% for visual analysis of patient urine samples and was 100% for DOASENSE Reader analysis of patient urines and for analysis of control group urines and DOASENSE control urines. Abnormalities in urine color detected by the Combur-10 test did not affect the DOAC Dipstick results. DOAC Dipstick detects DOACs in urine at a plasma threshold of ≥30 ng/mL. Positive DOAC Dipstick results should be confirmed by measuring DOAC plasma concentration.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Clark, D. R., und T. M. Hajar. „Detection and confirmation of cocaine use by chromatographic analysis for methylecgonine in urine.“ Clinical Chemistry 33, Nr. 1 (01.01.1987): 118–19. http://dx.doi.org/10.1093/clinchem/33.1.118.

Der volle Inhalt der Quelle
Annotation:
Abstract Methylecgonine is a common metabolite of cocaine in man. We prepared methylecgonine and developed thin-layer chromatographic and gas-chromatographic methods for its detection in urine. Seventy urine specimens from our drug screening laboratory were tested by our method and by EMIT. Both methods were positive for 26 urines, and both were negative for 42 urines. The other two urines were shown to contain cocaine by GC/MS, and no detectable metabolites. We thus demonstrated that detection of methylecgonine and cocaine is as sensitive a test for cocaine use as EMIT.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Peelen, G. O., J. G. de Jong und R. A. Wevers. „HPLC analysis of oligosaccharides in urine from oligosaccharidosis patients“. Clinical Chemistry 40, Nr. 6 (01.06.1994): 914–21. http://dx.doi.org/10.1093/clinchem/40.6.914.

Der volle Inhalt der Quelle
Annotation:
Abstract Analysis of urinary oligosaccharides by thin-layer chromatography (TLC) is used as screening procedure for 10 different lysosomal diseases. We tested the usefulness of HPLC in screening, using a CarboPac PA1 column (Dionex), pulsed amperometric detection (PAD), and post-column derivatization (PCD). Patterns from six types of oligosaccharidoses were compared with normal urinary patterns and with the TLC patterns. PAD appeared to be nonspecific and therefore is applicable only to desalted urine samples. PCD was more specific and applicable to nondesalted urine samples, albeit with a lower resolving power. Peaks in urines from oligosaccharidoses patients were identified on the basis of retention times of commercially available oligosaccharides or TLC bands after isolation and HPLC of the corresponding oligosaccharides. Abnormal oligosaccharide peaks were seen in urines from patients with alpha-mannosidosis, GM1-gangliosidosis (juvenile), GM2-gangliosidosis (Sandhoff disease), Pompe disease, and beta-mannosidosis. HPLC detected no abnormal oligosaccharides in urine from patients with fucosidosis. Although TLC is a simple and reliable screening procedure for detecting classical lysosomal diseases with oligosaccharide excretion, HPLC, by its higher resolution and possibility of quantification, can more generally be used for recognition of abnormal oligosaccharides or detection of increased excretion or content for known oligosaccharides in urine, other body fluids, and cells.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Monferdini, Donna, Margaret Joinville und William Grove. „Improving Urine Sediment Analysis“. Laboratory Medicine 26, Nr. 10 (01.10.1995): 660–64. http://dx.doi.org/10.1093/labmed/26.10.660.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hamid Saad Mohmoud1, Marai. „Dipstick urine analysis screening among asymptomatic dogs of k9 units“. Iraqi Journal of Veterinary Medicine 42, Nr. 1 (2018): 61–64. http://dx.doi.org/10.30539/011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

van Kuilenburg, André B. P., Henk van Lenthe, Monika Löffler und Albert H. van Gennip. „Analysis of Pyrimidine Synthesis “de Novo” Intermediates in Urine and Dried Urine Filter- Paper Strips with HPLC–Electrospray Tandem Mass Spectrometry“. Clinical Chemistry 50, Nr. 11 (01.11.2004): 2117–24. http://dx.doi.org/10.1373/clinchem.2004.038869.

Der volle Inhalt der Quelle
Annotation:
Abstract Background: The concentrations of the pyrimidine “de novo” metabolites and their degradation products in urine are useful indicators for the diagnosis of an inborn error of the pyrimidine de novo pathway or a urea-cycle defect. Until now, no procedure was available that allowed the analysis of all of these metabolites in a single analytical run. We describe a rapid, specific method to measure these metabolites by HPLC–tandem mass spectrometry. Methods: Urine or urine-soaked filter-paper strips were used to measure N-carbamyl-aspartate, dihydroorotate, orotate, orotidine, uridine, and uracil. Reversed-phase HPLC was combined with electrospray ionization tandem mass spectrometry, and detection was performed by multiple-reaction monitoring. Stable-isotope-labeled reference compounds were used as internal standards. Results: All pyrimidine de novo metabolites and their degradation products were measured within a single analytical run of 14 min with lower limits of detection of 0.4–3 μmol/L. The intra- and interassay variation for urine with added compounds was 1.2–5% for urines and 2–9% for filter-paper extracts of the urines. Recoveries of the added metabolites were 97–106% for urine samples and 97–115% for filter-paper extracts of the urines. Analysis of urine samples from patients with a urea-cycle defect or pyrimidine degradation defect showed an aberrant metabolic profile when compared with controls. Conclusion: HPLC with electrospray ionization tandem mass spectrometry allows rapid testing for disorders affecting the pyrimidine de novo pathway. The use of filter-paper strips could facilitate collection, transport, and storage of urine samples.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Moreno, Ana María Jiménez, und María José Navas Sánchez. „Luminol Chemiluminescence in Urine Analysis“. Applied Spectroscopy Reviews 41, Nr. 6 (Dezember 2006): 549–74. http://dx.doi.org/10.1080/05704920600899980.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Lin, Chun-Che, Chin-Chung Tseng, Tsung-Kai Chuang, Der-Seang Lee und Gwo-Bin Lee. „Urine analysis in microfluidic devices“. Analyst 136, Nr. 13 (2011): 2669. http://dx.doi.org/10.1039/c1an15029d.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jandke, Joachim, und Gerhard Spiteller. „Dipeptide analysis in human urine“. Journal of Chromatography B: Biomedical Sciences and Applications 382 (Januar 1986): 39–45. http://dx.doi.org/10.1016/s0378-4347(00)83502-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Urine Analysis"

1

Lough, Patricia Schechter. „Use of urine samples for ethanol analysis“. CSUSB ScholarWorks, 1989. https://scholarworks.lib.csusb.edu/etd-project/446.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Abdelrazig, Salah M. A. „Mass spectrometry for high-throughput metabolomics analysis of urine“. Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/30600/.

Der volle Inhalt der Quelle
Annotation:
Direct electrospray ionisation-mass spectrometry (direct ESI-MS), by omitting the chromatographic step, has great potential for application as a high-throughput approach for untargeted urine metabolomics analysis compared to liquid chromatography-mass spectrometry (LC-MS). The rapid development and technical innovations revealed in the field of ambient ionisation MS such as nanoelectrospray ionisation (nanoESI) chip-based infusion and liquid extraction surface analysis mass spectrometry (LESA-MS) suggest that they might be suitable for high-throughput metabolomics analysis. In this thesis, LC-MS and high-throughput direct ESI-MS methods using high resolution orbital trap mass spectrometer were developed and validated for untargeted metabolomics of human urine. Three different direct ESI-MS techniques were explored and compared with LC-MS: flow injection electrospray ionisation-MS (FIE-MS), chip-based infusion and LESA-MS of dried urine spots on a cell culture slide. A high-throughput sample preparation protocol was optimised using in-house artificial urine. Urine samples after consumption of green tea and healthy controls were used as a model to explore the performance and classification ability of the direct ESI-MS. High-throughput data pre-processing and multivariate analysis protocols were established for each method. The developed methods were finally applied for the analysis of clinical urine samples for biomarker discovery and to investigate the metabolic changes in osteoarthritis and malaria. Also, the methods were applied to study the effect of oligofructose diet on the gut microbial community of healthy subjects. The analytical performance of the methods for urine metabolomics was validated using quality control (QC) and principal component analysis (PCA) approaches. Rigorous validation including cross-validation, permutation test, prediction models and area under receiver operating characteristic (ROC) curve (AUC) was performed across the generated datasets using the developed methods. Analysis of green tea urine samples generated 4128, 748, 1064 and 1035 ions from LC-MS, FIE-MS, chip-based infusion and LESA-MS analysis, respectively. A selected set of known green tea metabolites in urine were used to evaluate each method for detection sensitivity. 15 metabolites were found with LC-MS compared to 8, 5 and 6 with FIE-MS, chip-based infusion and LESA, respectively. The developed methods successfully differentiated between the metabolic profiles of osteoarthritis active patients and healthy controls (Q2 0.465 (LC-MS), 0.562 (FIE-MS), 0.472 (chip-based infusion) and 0.493 (LESA-MS)). The altered level of metabolites detected in osteoarthritis patients showed a perturbed activity in TCA cycle, pyruvate metabolism, -oxidation pathway, amino acids and glycerophospholipids metabolism, which may provide evidence of mitochondrial dysfunction, inflammation, oxidative stress, collagen destruction and use of lipolysis as an alternative energy source in the cartilage cells of osteoarthritis patients. FIE-MS, chip-based infusion and LESA-MS increased the analysis throughput and yet they were able to provide 33%, 44% and 44%, respectively, of the LC-MS information, indicating their great potential for diagnostic application in osteoarthritis. Malaria samples datasets generated 9,744 and 576 ions from LC-MS and FIE-MS, respectively. Supervised multivariate analysis using OPLS-DA showed clear separation and clustering of malaria patients from controls in both LC-MS and FIE-MS methods. Cross-validation R2Y and Q2 values obtained by FIE-MS were 0.810 and 0.538, respectively, which are comparable to the values of 0.993 and 0.583 achieved by LC-MS. The sensitivity and specificity were 80% and 77% for LC-MS and FIE-MS, respectively, indicating valid, reliable and comparable results of both methods. With regards to biomarker discovery, altered level of 30 and 17 metabolites were found by LC-MS and FIE-MS, respectively, in the urine of malaria patients compared to healthy controls. Among these metabolites, pipecolic acid, taurine, 1,3-diacetylpropane, N-acetylspermidine and N-acetylputrescine may have the potential of being used as biomarkers of malaria. LC-MS and FIE-MS were able to separate urine samples of healthy subjects on oligofructose diet from controls (specificity/sensitivity 80%/88% (LC-MS) and 71%/64% (FIE-MS)). An altered level of short chain fatty acids (SCFAs), fatty acids and amino acids were observed in urine as a result of oligofructose intake, suggesting an increased population of the health-promoting Bifidobacterium and a decreased Lactobacillus and Enterococcus genera in the colon. In conclusion, the developed direct ESI-MS methods demonstrated the ability to differentiate between inherent types of urine samples in disease and health state. Therefore they are recommended to be used as fast diagnostic tools for clinical urine samples. The developed LC-MS method is necessary when comprehensive biomarker screening is required.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Cooper, Mark Thomas. „A chromatographic method for detecting phenolic metabolites of carbosulfan in urine“. Thesis, Queensland University of Technology, 1989. https://eprints.qut.edu.au/35977/1/35977_Cooper_1989.pdf.

Der volle Inhalt der Quelle
Annotation:
The inability of the conventional blood cholinesterase test to reliably detect carbamate pesticide poisoning in humans prompted the investigation of an alternative surveillance method. Rapid, micro-scale sample treatment procedures were developed to extract the phenolic metabolites of carbosulfan from urine, convert these compounds to their dinitrophenyl ether derivatives and determine their concentrations quantitatively by nitrogen selective gas-liquid chromatography. This method was capable of detecting micro-gram levels of metabolites and performed to an accuracy of<+/ 10% and precision of< 6% RSD. In vivo experiments we re undertaken in which carbosul fan was administered to laboratory rats and the effects of dosage and sampling time on the level of phenolic metabolites in urine were examined. These results provide guidelines for human exposure however absolute confidence in these thresholds will only occur when the data base of human experience is collected and correlated to metabolite levels in urine. Urine samples were drawn and analyzed from potentially exposed personnel handling carbosulfan and in all cases no phenolic metabolites were detected.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Kirk, Jayne Marie. „Mass Spectrometric Analysis of Steroid Hormones for Application in Analysis of Bovine Urine“. Thesis, University of York, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.485830.

Der volle Inhalt der Quelle
Annotation:
Analytical strategies for the identification and quantification of up to 14 androgenic steroids and up to 17 corticosteroids have been evaluated and applied to bovine urine. The two classes ofsteroid have been analysed both as the native species and as Girard P hydrazone derivatives. Triple quadrupole mass spectrometry, operated in multiple reaction monitoring mode, has permitted the development of methods that enable the simultaneous detection of a range ofandrogenic steroids and corticosteroids at the ng mL-1 level. For a non-targeted approach, screening for the presence of corticosteroids was performed on a time of flight mass spectrometer, where confirmation of the identities of corticosteroids was obtained from accurate mass information. Girard P hydrazone derivatives of androgenic steroids and corticosteroids are amenable to analysis by electrospray mass spectrometry. The presence of an ionic group at position C-3 ofthe steroids increases their response relative to the native species by up to 33 times for the androgenic steroids and up to 21 times for the corticosteroids. The derivatisation reaction has been shown to work effectively in bovine urine, with limits ofdetection determined as ::::; 1 ng mL-1 for both classes ofsteroid hydrazone. Ion trap mass spectrometry has proved to be an extremely powerful tool for the elucidation of dissociation pathways of steroids and their hydrazone derivatives. Analysis of androgenic steroids, androgenic steroid hydrazones and corticosteroid hydrazones using multistage tandem mass spectrometry has shown how the varying functionality of the steroids affects their dissociation pathways, and how comparisons between similar structures can aid the assignment of product ions. Multistage tandem mass spectrometry of the hydrazone derivatives provides a wealth of structure-specific product ions arising due to losses from either the steroid or hydrazine moiety, and detailed dissociation sequences have been established, enabling structure assignment. A complete method employing sample extraction and derivatisation followed by analysis using liquid chromatography-multistage tandem mass spectrometry has been developed to allow full characterisation and structure confirmation of the steroids present in urine.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Couchman, Lewis. „LC-MS/MS analysis of buprenorphine and norbuprenorphine in urine“. Thesis, Queen Mary, University of London, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.511397.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Hassan, Syed Saeed-Ul. „Rapid immunological methods for analysis of dexamethasone in equine urine“. Thesis, University of Sunderland, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245822.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Allen, Robert Douglas III. „Development of an assay for the detection of cytomegalovirus in urine“. Thesis, Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/25410.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Chen, Hui-Chuen. „The urinary excretion of mercapturic acids in free-living adult males“. Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-12052009-020010/.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Hoang, Tiffany Truc. „Speciation and identification of low molecular weight organoselenium metabolites in human urine“. Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/30671.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Stubbs, Christopher. „High performance liquid chromatographic analysis of erythromycin in serum and urine“. Thesis, Rhodes University, 1985. http://hdl.handle.net/10962/d1004581.

Der volle Inhalt der Quelle
Annotation:
Erythromycin, a macrolide antibiotic used mainly against gram-positive bacteria has been in clinical use since 1952 (1). Previous pharmacokinetic data published on this antibiotic have been derived predominantly from microbiological assay techniques. However, these techniques are relatively imprecise as well as being non-specific and extremely tedious to perform. A novel high performance liquid chromatographic analysis of erythromycin in human serum and urine using U.V. detection at 200 nm and/or electrochemical detection using both an amperometric and a coulometric electrochemical detector is presented. The method involves a solid phase extraction procedure followed by a simple phase separation step and chromatography on a reverse phase column. In order to select the optimum U.V. detector for this analysis, five "state of the art" detectors were compared in terms of their signal-to-noise ratios at U.V. wavelengths between 200 and 210 nm. A known metabolite des-N-methylerythromycin is readily detectable using U.V. detection, whilst another metabolite/degradation product anhydroerythromycin is not seen using U.V. detection but is readily observable using an electrochemical detector. The method has a limit of sensitivity of 0.25 μg/mL and 1.00 μg/mL in serum and urine respectively (U.V. detection) and is sufficiently sensitive to monitor serum and urine concentrations of erythromycin in man after administration of a single 500 mg erythromycin stearate tablet.
KMBT_363
Adobe Acrobat 9.53 Paper Capture Plug-in
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Urine Analysis"

1

Fundamentals of urine & body fluid analysis. 3. Aufl. St. Louis, Mo: Elsevier/Saunders, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

G, Newall R., und Howell R, Hrsg. Clinical urinalysis: The principles and practice of urine testing in the hospital and community. Stoke Poges: Ames Division, Miles, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

), Dranow Merilee (Tr, Hrsg. The Golden Fountain: Complete Guide to Urine Therapy. Bath: Gateway Books., 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Fundamentals of urine and body fluid analysis. Philadelphia: Saunders, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Associations, American Trucking, Hrsg. The Correct collection of urine samples. Alexandria, VA (2200 Mill Rd., Alexandria 22314-4677): American Trucking Associations, 1989.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

The urinary proteome: Methods and protocols. New York, NY: Humana Press, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Stewart, Cameron J., und Fogazzi G. B, Hrsg. The urinary sediment: An integrated view. London: Chapman & Hall Medical, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Kabīruddīn, Muḥammad. Risālah-yi qārūrah. 3. Aufl. Lāhaur: Idārah-yi Mat̤būʻāt-i Sulaimānī, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cregan, S. P. Bioassay techniques for 55Fe in urine samples. Chalk River, Ont: Health Physics Branch, Chalk River Laboratories, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Jorgenson, Linné Jean, Hrsg. Urinalysis and body fluids: A colortext and atlas. St. Louis: Mosby, 1995.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Urine Analysis"

1

Henderson, Scott R., und Mark Harber. „Urine Analysis“. In Practical Nephrology, 19–28. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5547-8_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Sharkey, Leslie. „Urine Analysis“. In Interpretation of Equine Laboratory Diagnostics, 383–86. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781118922798.ch57.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Henderson, Scott R., und Mark Harber. „Urine Analysis“. In Primer on Nephrology, 29–43. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-76419-7_2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Neuendorf, Josefine. „Microscopic Urine Sediment: Analysis and Findings“. In Urine Sediment, 159–222. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-15911-5_12.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Ridley, John W. „Fecal Analysis“. In Fundamentals of the Study of Urine and Body Fluids, 341–55. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78417-5_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Bauld, W. S., und R. M. Greenway. „Chemical Determination of Estrogens in Human Urine“. In Methods of Biochemical Analysis, 337–406. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2006. http://dx.doi.org/10.1002/9780470110218.ch7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Ridley, John W. „Cerebrospinal Fluid Analysis“. In Fundamentals of the Study of Urine and Body Fluids, 251–76. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78417-5_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ridley, John W. „Serous Fluids Analysis“. In Fundamentals of the Study of Urine and Body Fluids, 301–22. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-78417-5_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dhrupad, U., N. H. Vignesh, Hari Murthy, Chandra Mukherjee und Aynur Unal. „AI Based Non-invasive Glucose Detection Using Urine“. In ICT Analysis and Applications, 513–19. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0630-7_51.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pieper, Rembert. „Preparation of Urine Samples for Proteomic Analysis“. In Methods in Molecular Biology™, 89–99. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-60327-210-0_8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Urine Analysis"

1

Anthimopoulos, Marios, Sidharta Gupta, Spyridon Arampatzis und Stavroula Mougiakakou. „Smartphone-based urine strip analysis“. In 2016 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2016. http://dx.doi.org/10.1109/ist.2016.7738253.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Chicea, D., R. Chicea, L. M. Chicea, Madalin Bunoiu und Iosif Malaescu. „Using DLS for Fast Urine Sample Analysis“. In Proceedings of the Physics Conference. AIP, 2010. http://dx.doi.org/10.1063/1.3482223.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Zaylaa, Amira J., Rania Ghotmi und Samara Barakat. „Urine Analysis Device from Research to Design“. In 2020 IEEE 5th Middle East and Africa Conference on Biomedical Engineering (MECBME). IEEE, 2020. http://dx.doi.org/10.1109/mecbme47393.2020.9265127.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Chun-Yan Li, Bin Fang, Yi Wang, Guang-Zhou Lu, Ji-Ye Qian und Lin Chen. „Automatic detecting and recognition of casts in urine sediment images“. In 2009 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR). IEEE, 2009. http://dx.doi.org/10.1109/icwapr.2009.5207456.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Jones, K., P. Akrill, R. Guiver und J. Cocker. „56. Biological Monitoring of Nitroglycerin Exposure by Urine Analysis“. In AIHce 2002. AIHA, 2002. http://dx.doi.org/10.3320/1.2766408.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kavita und Sahil Sharma. „Study of reliability of urine sample in forensic analysis“. In ADVANCEMENTS IN CIVIL ENGINEERING: COSMEC-2021. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0120044.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Huda, Thorikul, Durotun Nafisah, Suryati Kumorowulan und Sri Lestari. „Quality control of test iodine in urine by spectrophotometry UV–Vis“. In INTERNATIONAL CONFERENCE AND WORKSHOP ON MATHEMATICAL ANALYSIS AND ITS APPLICATIONS (ICWOMAA 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5016017.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Ongkum, Chaowarit, Kriwut Keawmitr und Ekkarat Boonchieng. „Analysis system for urine strip test using image processing technique“. In 2016 9th Biomedical Engineering International Conference (BMEiCON). IEEE, 2016. http://dx.doi.org/10.1109/bmeicon.2016.7859610.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

„Nitrogen cycling under urine patches: model comparison and sensitivity analysis“. In 20th International Congress on Modelling and Simulation (MODSIM2013). Modelling and Simulation Society of Australia and New Zealand (MSSANZ), Inc., 2013. http://dx.doi.org/10.36334/modsim.2013.h4.vogeler.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Theodoridis, Georgios, Olga Begou, Olga Deda, Helen Gika, Ioannis Taitzoglou, Nikolaos Raikos und Agapios Agapiou. „URINE AND FECES METABOLOMICS-BASED ANALYSIS OF CAROB TREATED RATS“. In The 2nd International Electronic Conference on Metabolomics. Basel, Switzerland: MDPI, 2017. http://dx.doi.org/10.3390/iecm-2-04992.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Berichte der Organisationen zum Thema "Urine Analysis"

1

Mirocha, Chester J., Young B. Kim, Urooj Mirza, Weiping Xie und Hamed K. Abbas. Analysis of Saxitoxin from Urine Using Dynamic FAB/MS. Fort Belvoir, VA: Defense Technical Information Center, Oktober 1991. http://dx.doi.org/10.21236/ada244960.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Mirocha, Chester J., Won J. Cheong und Hamed Abbas. Analysis of Saxitoxin from Urine Using Dynamic FAB/MS. Fort Belvoir, VA: Defense Technical Information Center, Juli 1990. http://dx.doi.org/10.21236/ada226474.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Piraner, Olga, Rose T. Preston, Sonoya Toyoko Shanks und Robert Jones. 90Sr liquid scintillation urine analysis utilizing different approaches for tracer recovery. Office of Scientific and Technical Information (OSTI), August 2010. http://dx.doi.org/10.2172/1097198.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Sun, L. C., A. R. Moorthy, E. Kaplan, J. W. Baum und C. B. Meinhold. Assessment of plutonium exposures in Rongelap and Utirik populations by fission track analysis of urine. Office of Scientific and Technical Information (OSTI), September 1994. http://dx.doi.org/10.2172/10181822.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wong, C., und L. Collins. TECHNICAL EQUIVALENCE BETWEEN PERKIN-ELMER DRCe AND ELAN 6000 FOR THE ANALYSIS OF 238U IN URINE BIOASSAY SAMPLES. Office of Scientific and Technical Information (OSTI), September 2007. http://dx.doi.org/10.2172/924967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Mayer, B., A. Williams, R. Leif, R. Udey und A. Vu. Extraction of Sulfur Mustard Metabolites from Urine Samples and Analysis by Liquid Chromatography-High-Resolution Mass Spectrometry (LC-HRMS). Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1165796.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Mayer, B. P., A. M. Williams, R. N. Leif und A. K. Vu. Extraction of Phosphonic Acids from Urine Samples and Analysis by Gas Chromatography with Detection by Mass Spectrometryand Flame Photometric Detection. Office of Scientific and Technical Information (OSTI), Dezember 2013. http://dx.doi.org/10.2172/1116967.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Botchkina, Galina I., und Howard L. Adler. Validation of Quantitative Multimodality Analysis of Telomerase Activity in Urine Cells as a Noninvasive Diagnostic and Prognostic Tool for Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, August 2005. http://dx.doi.org/10.21236/ada468571.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Zhu, Zhihong, Yue Zhuo, Haitao Jin, Boyu Wu und Zhijie Li. Chinese Medicine Therapies for Neurogenic Bladder after Spinal Cord Injury: A protocol for systematic review and network meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, August 2021. http://dx.doi.org/10.37766/inplasy2021.8.0084.

Der volle Inhalt der Quelle
Annotation:
Neurogenic bladder (NB), a refractory disease, is characterized by voiding dysfunction of bladder and/or urethra, and spinal cord injury (SCI) is a common cause. Chinese medicine therapies have been applied extensively in the treatment of neurogenic bladder, especially in China, and the results are promising but varying. Thus, the aim of this work is to assess the efficacy and safety of various Chinese medicine therapies for neurogenic bladder after spinal cord injury. Condition being studied: Chinese medicine therapies; Neurogenic bladder after spinal cord injury. Main outcome(s): The primary outcome of our NMA will be measured by overall response rate and urodynamic tests, which includes postvoiding residual urine volume, maximum urinary flow rate, and maximal detrusor pressure.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Wrenn, M. E., N. P. Singh und Ying-Hua Xue. Fission track analysis of plutonium in small specimens of biological material: Ultrasensitive analysis for sup 239 Pu in 50 urine samples from the Marshall Islands furnished by Brookhaven National Laboratory. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6315643.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie