Zeitschriftenartikel zum Thema „Urea oxidation reaction“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Urea oxidation reaction" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Sun, Wenbin, Jiechen Li, Wen Gao, Luyao Kang, Fengcai Lei und Junfeng Xie. „Recent advances in the pre-oxidation process in electrocatalytic urea oxidation reactions“. Chemical Communications 58, Nr. 15 (2022): 2430–42. http://dx.doi.org/10.1039/d1cc06290e.
Der volle Inhalt der QuelleGan, Lina, Yang Liu, Peng Ye, Hejingying Niu und Kezhi Li. „Reaction Mechanism for the Removal of NOx by Wet Scrubbing Using Urea Solution: Determination of Main and Side Reaction Paths“. Molecules 28, Nr. 1 (25.12.2022): 162. http://dx.doi.org/10.3390/molecules28010162.
Der volle Inhalt der QuelleWu, Tzu-Ho, Yan-Cheng Lin, Bo-Wei Hou und Wei-Yuan Liang. „Nanostructured β−NiS Catalyst for Enhanced and Stable Electro−oxidation of Urea“. Catalysts 10, Nr. 11 (04.11.2020): 1280. http://dx.doi.org/10.3390/catal10111280.
Der volle Inhalt der QuelleMartincigh, Bice S., Morgen Mhike, Kayode Morakinyo, Risikat Ajibola Adigun und Reuben H. Simoyi. „Oxyhalogen–Sulfur Chemistry: Oxidation of a Thiourea Dimer, Formamidine Disulfide, by Chlorine Dioxide“. Australian Journal of Chemistry 66, Nr. 3 (2013): 362. http://dx.doi.org/10.1071/ch12181.
Der volle Inhalt der QuelleLin, Chong, Zhengfei Gao, Feng Zhang, Jianhui Yang, Bin Liu und Jian Jin. „In situ growth of single-layered α-Ni(OH)2 nanosheets on a carbon cloth for highly efficient electrocatalytic oxidation of urea“. Journal of Materials Chemistry A 6, Nr. 28 (2018): 13867–73. http://dx.doi.org/10.1039/c8ta05064c.
Der volle Inhalt der QuelleYu, Hua, Wei Xu, Hongchao Chang, Guangyao Xu, Lecong Li, Jiarong Zang, Rong Huang, Luxia Zhu und Binbin Yu. „Electrocatalytic Ni-Co Metal Organic Framework for Efficient Urea Oxidation Reaction“. Processes 11, Nr. 10 (22.10.2023): 3035. http://dx.doi.org/10.3390/pr11103035.
Der volle Inhalt der QuelleZhu, Dongdong, Chunxian Guo, Jinlong Liu, Liang Wang, Yi Du und Shi-Zhang Qiao. „Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation“. Chemical Communications 53, Nr. 79 (2017): 10906–9. http://dx.doi.org/10.1039/c7cc06378d.
Der volle Inhalt der QuelleLi, Jiaxin, Hongyi Cui, Xiaoqiang Du und Xiaoshuang Zhang. „The controlled synthesis of nitrogen and iron co-doped Ni3S2@NiP2 heterostructures for the oxygen evolution reaction and urea oxidation reaction“. Dalton Transactions 51, Nr. 6 (2022): 2444–51. http://dx.doi.org/10.1039/d1dt03933d.
Der volle Inhalt der QuelleSreekanth, T. V. M., G. R. Dillip, X. Wei, K. Yoo und J. Kim. „Binder free Ni/NiO electrocatalysts for urea oxidation reaction“. Materials Letters 327 (November 2022): 133038. http://dx.doi.org/10.1016/j.matlet.2022.133038.
Der volle Inhalt der QuellePatzer, John F., S. K. Wolfson und S. J. Yao. „Reactor control and reaction kinetics for electrochemical urea oxidation“. Chemical Engineering Science 45, Nr. 8 (1990): 2777–84. http://dx.doi.org/10.1016/0009-2509(90)80170-j.
Der volle Inhalt der QuelleZequine, Camila, Fangzhou Wang, Xianglin Li, Deepa Guragain, S. R. Mishra, K. Siam, P. Kahol und Ram Gupta. „Nanosheets of CuCo2O4 As a High-Performance Electrocatalyst in Urea Oxidation“. Applied Sciences 9, Nr. 4 (24.02.2019): 793. http://dx.doi.org/10.3390/app9040793.
Der volle Inhalt der QuelleZhang, Jingfang, Fei Xing, Hongjuan Zhang und Yi Huang. „Ultrafine NiFe clusters anchored on N-doped carbon as bifunctional electrocatalysts for efficient water and urea oxidation“. Dalton Transactions 49, Nr. 40 (2020): 13962–69. http://dx.doi.org/10.1039/d0dt02459g.
Der volle Inhalt der QuelleZHOU, MAO, und YUQING MIAO. „ELECTROCATALYSIS OF THE NEEDLE-LIKE NiMoO4 CRYSTAL TOWARD UREA OXIDATION COUPLED WITH H2 PRODUCTION“. Surface Review and Letters 25, Nr. 02 (Februar 2018): 1850061. http://dx.doi.org/10.1142/s0218625x18500610.
Der volle Inhalt der QuelleMa, Yaming, Chenxiang Ma, Yingche Wang und Ke Wang. „Advanced Nickel-Based Catalysts for Urea Oxidation Reaction: Challenges and Developments“. Catalysts 12, Nr. 3 (16.03.2022): 337. http://dx.doi.org/10.3390/catal12030337.
Der volle Inhalt der QuelleAo, Dana, Yue Shi, Shuyuan Li, Ying Chang, Aiju Xu, Jingchun Jia und Meilin Jia. „3D Co-Ni-C Network from Milk as Competitive Bifunctional Catalysts for Methanol and Urea Electrochemical Oxidation“. Catalysts 11, Nr. 7 (14.07.2021): 844. http://dx.doi.org/10.3390/catal11070844.
Der volle Inhalt der QuelleZhu, Dongdong, Huaiyu Zhang, Juhong Miao, Fangxin Hu, Liang Wang, Yujia Tang, Man Qiao und Chunxian Guo. „Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction“. Journal of Materials Chemistry A 10, Nr. 7 (2022): 3296–313. http://dx.doi.org/10.1039/d1ta09989b.
Der volle Inhalt der QuelleRanjani, M., N. Senthilkumar, G. Gnana kumar und Arumugam Manthiram. „3D flower-like hierarchical NiCo2O4architecture on carbon cloth fibers as an anode catalyst for high-performance, durable direct urea fuel cells“. Journal of Materials Chemistry A 6, Nr. 45 (2018): 23019–27. http://dx.doi.org/10.1039/c8ta08405j.
Der volle Inhalt der QuelleAladeemy, Saba A., Abdullah M. Al-Mayouf, Mabrook S. Amer, Nouf H. Alotaibi, Mark T. Weller und Mohamed A. Ghanem. „Structure and electrochemical activity of nickel aluminium fluoride nanosheets during urea electro-oxidation in an alkaline solution“. RSC Advances 11, Nr. 5 (2021): 3190–201. http://dx.doi.org/10.1039/d0ra10814f.
Der volle Inhalt der QuelleMa, Xiaohong, Huan Chen, Ruihuan Chen und Xiaojun Hu. „Direct and Activated Chlorine Dioxide Oxidation for Micropollutant Abatement: A Review on Kinetics, Reactive Sites, and Degradation Pathway“. Water 14, Nr. 13 (24.06.2022): 2028. http://dx.doi.org/10.3390/w14132028.
Der volle Inhalt der QuelleZhao, Huipeng, Xiaoqiang Du und Xiaoshuang Zhang. „Interfacing or doping? Role of Ce in water oxidation reaction and urea oxidation reaction of N-Ni3S2“. Journal of Alloys and Compounds 925 (Dezember 2022): 166662. http://dx.doi.org/10.1016/j.jallcom.2022.166662.
Der volle Inhalt der QuelleAnuratha, Krishnan Shanmugam, Mia Rinawati, Tzu-Ho Wu, Min-Hsin Yeh und Jeng-Yu Lin. „Recent Development of Nickel-Based Electrocatalysts for Urea Electrolysis in Alkaline Solution“. Nanomaterials 12, Nr. 17 (27.08.2022): 2970. http://dx.doi.org/10.3390/nano12172970.
Der volle Inhalt der QuelleWang, Qingqing, Yongdan Li und Cuijuan Zhang. „Amorphous Nickel Oxide as Efficient Electrocatalyst for Urea Oxidation Reaction“. Journal of The Electrochemical Society 168, Nr. 7 (01.07.2021): 076502. http://dx.doi.org/10.1149/1945-7111/ac0ec4.
Der volle Inhalt der QuelleXIONG, Youling L., und John E. KINSELLA. „Evidence of a urea-induced sulfhydryl oxidation reaction in proteins.“ Agricultural and Biological Chemistry 54, Nr. 8 (1990): 2157–59. http://dx.doi.org/10.1271/bbb1961.54.2157.
Der volle Inhalt der QuelleXiong, Youling L., und John E. Kinsella. „Evidence of a Urea-induced Sulfhydryl Oxidation Reaction in Proteins“. Agricultural and Biological Chemistry 54, Nr. 8 (August 1990): 2157–59. http://dx.doi.org/10.1080/00021369.1990.10870274.
Der volle Inhalt der QuelleZhang, Longsheng, Liping Wang, Haiping Lin, Yunxia Liu, Jinyu Ye, Yunzhou Wen, Ao Chen et al. „A Lattice‐Oxygen‐Involved Reaction Pathway to Boost Urea Oxidation“. Angewandte Chemie International Edition 58, Nr. 47 (18.11.2019): 16820–25. http://dx.doi.org/10.1002/anie.201909832.
Der volle Inhalt der QuelleZhang, Longsheng, Liping Wang, Haiping Lin, Yunxia Liu, Jinyu Ye, Yunzhou Wen, Ao Chen et al. „A Lattice‐Oxygen‐Involved Reaction Pathway to Boost Urea Oxidation“. Angewandte Chemie 131, Nr. 47 (18.11.2019): 16976–81. http://dx.doi.org/10.1002/ange.201909832.
Der volle Inhalt der QuelleLiu, Haipeng, Peike Wang, Xue Qi, Jiang Liu, Ao Yin, Yuxin Wang, Yang Ye et al. „An amorphous nickel carbonate catalyst for superior urea oxidation reaction“. Journal of Electroanalytical Chemistry 949 (November 2023): 117856. http://dx.doi.org/10.1016/j.jelechem.2023.117856.
Der volle Inhalt der QuelleHuang, Wen, Kaili Wang, Qiuhan Cao, Yongjie Zhao, Xiujuan Sun, Rui Ding, Enhui Liu, Ping Gao und Gaijuan Li. „Hierarchical NiCo pearl strings as efficient electrocatalysts for urea electrooxidation“. New Journal of Chemistry 45, Nr. 6 (2021): 2943–47. http://dx.doi.org/10.1039/d0nj06045c.
Der volle Inhalt der QuelleShi, Wei, Xiujuan Sun, Rui Ding, Danfeng Ying, Yongfa Huang, Yuxi Huang, Caini Tan, Ziyang Jia und Enhui Liu. „Trimetallic NiCoMo/graphene multifunctional electrocatalysts with moderate structural/electronic effects for highly efficient alkaline urea oxidation reaction“. Chemical Communications 56, Nr. 48 (2020): 6503–6. http://dx.doi.org/10.1039/d0cc02132f.
Der volle Inhalt der QuelleJadhav, Rohit G., und Apurba K. Das. „Pulse electrodeposited, morphology controlled organic–inorganic nanohybrids as bifunctional electrocatalysts for urea oxidation“. Nanoscale 12, Nr. 46 (2020): 23596–606. http://dx.doi.org/10.1039/d0nr07236b.
Der volle Inhalt der QuelleWang, Genxiang, Junxiang Chen, Yan Li, Jingchun Jia, Pingwei Cai und Zhenhai Wen. „Energy-efficient electrolytic hydrogen production assisted by coupling urea oxidation with a pH-gradient concentration cell“. Chemical Communications 54, Nr. 21 (2018): 2603–6. http://dx.doi.org/10.1039/c7cc09653d.
Der volle Inhalt der QuelleDiao, Yongxing, Yaosheng Liu, Guangxing Hu, Yuyan Zhao, Yuhong Qian, Hongda Wang, Yan Shi und Zhuang Li. „NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production“. Biosensors and Bioelectronics 211 (September 2022): 114380. http://dx.doi.org/10.1016/j.bios.2022.114380.
Der volle Inhalt der QuelleLi, Shuo, Shafqat Ali, Zareen Zuhra, Huahuai Shen, Jiaxiang Qiu, Yanbin Zeng, Ke Zheng, Xiaoxia Wang, Guanqun Xie und Shujiang Ding. „Cobalt Encapsulated in Nitrogen-Doped Graphite-like Shells as Efficient Catalyst for Selective Oxidation of Arylalkanes“. Molecules 29, Nr. 1 (21.12.2023): 65. http://dx.doi.org/10.3390/molecules29010065.
Der volle Inhalt der QuelleAbutaleb, Ahmed. „Electrochemical Oxidation of Urea on NiCu Alloy Nanoparticles Decorated Carbon Nanofibers“. Catalysts 9, Nr. 5 (28.04.2019): 397. http://dx.doi.org/10.3390/catal9050397.
Der volle Inhalt der QuelleYong, Jesus David, Ricardo Valdez, Miguel Ángel Armenta, Noé Arjona, Georgina Pina-Luis und Amelia Olivas. „Influence of Co2+, Cu2+, Ni2+, Zn2+, and Ga3+ on the iron-based trimetallic layered double hydroxides for water oxidation“. RSC Advances 12, Nr. 26 (2022): 16955–65. http://dx.doi.org/10.1039/d2ra01980a.
Der volle Inhalt der QuelleDinh, Minh Tuan Nguyen, Huy Thai Thanh Le, Trung Hieu Thanh Le und Chinh Chien Nguyen. „The synthesis of γ-MnOOH nanorods as an efficient electrocatalyst for urea oxidation“. Vietnam Journal of Catalysis and Adsorption 12, Nr. 2 (11.07.2023): 105–9. http://dx.doi.org/10.51316/jca.2023.038.
Der volle Inhalt der QuelleWala, Marta, Dorota Łubiarz, Natalia Waloszczyk und Wojciech Simka. „Plasma Electrolytic Oxidation of Titanium in Ni and Cu Hydroxide Suspensions towards Preparation of Electrocatalysts for Urea Oxidation“. Materials 16, Nr. 6 (09.03.2023): 2191. http://dx.doi.org/10.3390/ma16062191.
Der volle Inhalt der QuelleFeng, S., J. Luo, J. Li, Y. Yu, Z. Kang, W. Huang, Q. Chen, P. Deng, Y. Shen und X. Tian. „Heterogeneous structured Ni3Se2/MoO2@Ni12P5 catalyst for durable urea oxidation reaction“. Materials Today Physics 23 (März 2022): 100646. http://dx.doi.org/10.1016/j.mtphys.2022.100646.
Der volle Inhalt der QuelleLiu, Zailun, Fei Teng, Chen Yuan, Wenhao Gu und Wenjun Jiang. „Defect-engineered CoMoO4 ultrathin nanosheet array and promoted urea oxidation reaction“. Applied Catalysis A: General 602 (Juli 2020): 117670. http://dx.doi.org/10.1016/j.apcata.2020.117670.
Der volle Inhalt der QuelleZhu, Bingjun, Zibin Liang und Ruqiang Zou. „Designing Advanced Catalysts for Energy Conversion Based on Urea Oxidation Reaction“. Small 16, Nr. 7 (08.01.2020): 1906133. http://dx.doi.org/10.1002/smll.201906133.
Der volle Inhalt der QuelleGao, Xintong, Xiaowan Bai, Pengtang Wang, Yan Jiao, Kenneth Davey, Yao Zheng und Shi-Zhang Qiao. „Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation“. Nature Communications 14, Nr. 1 (20.09.2023). http://dx.doi.org/10.1038/s41467-023-41588-w.
Der volle Inhalt der QuelleGuo, Fenghui, Dongle Cheng, Qian Chen, Hao Liu, Zhiliang Wu, Ning Han, Bing-Jie Ni und Zhijie Chen. „Amorphous electrocatalysts for urea oxidation reaction“. Progress in Natural Science: Materials International, April 2024. http://dx.doi.org/10.1016/j.pnsc.2024.04.001.
Der volle Inhalt der QuelleLin, Runjia, Liqun Kang, Tianqi Zhao, Jianrui Feng, Veronica Celorrio, Guohui Zhang, Giannantonio Cibin et al. „Identification and manipulation of dynamic active site deficiency-induced competing reactions in electrocatalytic oxidation processes“. Energy & Environmental Science, 2022. http://dx.doi.org/10.1039/d1ee03522c.
Der volle Inhalt der QuelleZhu, Jianping, Haibo Wu, Kaige Gui, Zhirong Li, Chao Zhang, Jingping Wang und Jingyang Niu. „POMs@ZIF-8 derived transition metal carbides for urea electrolysis-assisted hydrogen generation“. Chemical Communications, 2022. http://dx.doi.org/10.1039/d2cc02875a.
Der volle Inhalt der QuelleXu, Ziyuan, Qiao Chen, Qingxi Chen, Pan Wang, Jiaxuan Wang, Chang Guo, Xueyuan Qiu, Xiao Han und Jianhua Hao. „Interface Enables Faster Surface Reconstruction in a Heterostructured Co-Ni-S Electrocatalyst towards Efficient Urea Oxidation“. Journal of Materials Chemistry A, 2022. http://dx.doi.org/10.1039/d2ta05494a.
Der volle Inhalt der QuelleSun, Mingming, Huichao Wang, Hongjing Wu, Yuquan Yang, Jiajia Liu, Riyu Cong, Zhengwenda Liang, Zhongning Huang und Jinlong Zheng. „Anion doping and interfacial effects in B-Ni5P4/Ni2P promoting urea-assisted hydrogen production in alkaline media“. Dalton Transactions, 2024. http://dx.doi.org/10.1039/d3dt03340f.
Der volle Inhalt der QuelleMeng, Xinying, Meng Wang, Yicong Zhang, Zhihao Li, Xiaogang Ding, Weiquan Zhang, Can Li und Zhen Li. „Superimposed OER and UOR performances by the interaction of each component in Fe–Mn electrocatalyst“. Dalton Transactions, 2022. http://dx.doi.org/10.1039/d2dt02780a.
Der volle Inhalt der QuelleWu, Na, Xiaoyu Chi, Yujuan Zhang und Tuoping Hu. „The convenient synthesis and the enhanced urea oxidation of NiO-CrO@N-C“. New Journal of Chemistry, 2024. http://dx.doi.org/10.1039/d3nj05877h.
Der volle Inhalt der QuelleGe, Weiyi, Liping Lin, Shu-Qi Wang, Yechen Wang, Xiaowei Ma, Qi An und Lu Zhao. „Electrocatalytic Urea Oxidation: Advances in Mechanistic Insights, Nanocatalyst Design, and Applications“. Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d3ta02007j.
Der volle Inhalt der QuelleFan, Jianfeng, und Xiaoqiang Du. „Role of Ce in enhanced performance of water oxidation reaction and urea oxidation reaction for NiFe Layered Double Hydroxide“. Dalton Transactions, 2022. http://dx.doi.org/10.1039/d2dt00862a.
Der volle Inhalt der Quelle