Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Unsteady simulation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Unsteady simulation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Unsteady simulation"
Wang, Zhi Gang, und Zhen Ning Zhang. „Modeling and Simulation of Unsteady Aerodynamics on a Morphing Wing“. Applied Mechanics and Materials 427-429 (September 2013): 77–80. http://dx.doi.org/10.4028/www.scientific.net/amm.427-429.77.
Der volle Inhalt der QuelleTorner, Benjamin, Lucas Konnigk, Sebastian Hallier, Jitendra Kumar, Matthias Witte und Frank-Hendrik Wurm. „Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier–Stokes simulation“. International Journal of Artificial Organs 41, Nr. 11 (13.06.2018): 752–63. http://dx.doi.org/10.1177/0391398818777697.
Der volle Inhalt der QuelleWang, Ziwei, Xiong Jiang, Ti Chen, Yan Hao und Min Qiu. „Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method“. Modern Physics Letters B 32, Nr. 12n13 (10.05.2018): 1840021. http://dx.doi.org/10.1142/s0217984918400213.
Der volle Inhalt der QuelleAdamczyk, J. J., M. L. Celestina und Jen Ping Chen. „Wake-Induced Unsteady Flows: Their Impact on Rotor Performance and Wake Rectification“. Journal of Turbomachinery 118, Nr. 1 (01.01.1996): 88–95. http://dx.doi.org/10.1115/1.2836611.
Der volle Inhalt der QuelleSznajder, Janusz, und Jerzy Zółtak. „APPLICATION OF AN EULER SOLVER TO SELECTED PROBLEMS IN FLIGHT DYNAMICS“. Aviation 11, Nr. 2 (31.03.2007): 13–22. http://dx.doi.org/10.3846/16487788.2007.9635956.
Der volle Inhalt der QuelleFeng, Guang, Wei-zheng Chen, Xue-sen Chu, Zhi Wang, Ming-hui Zhang und Wei-qi Chen. „Simulation of unsteady artificial supercavities“. Journal of Hydrodynamics 22, S1 (Oktober 2010): 862–68. http://dx.doi.org/10.1016/s1001-6058(10)60050-9.
Der volle Inhalt der QuelleHu, Le, Shu Jia Zhang und Cheng Xu. „The Use of Steady Multi-Phase Position and Unsteady Computational Methods in the Numerical Simulation of Double-Suction Centrifugal Pump“. Advanced Materials Research 181-182 (Januar 2011): 201–5. http://dx.doi.org/10.4028/www.scientific.net/amr.181-182.201.
Der volle Inhalt der QuelleMünsterjohann, Sven, Jens Grabinger, Stefan Becker und Manfred Kaltenbacher. „CAA of an Air-Cooling System for Electronic Devices“. Advances in Acoustics and Vibration 2016 (20.10.2016): 1–17. http://dx.doi.org/10.1155/2016/4785389.
Der volle Inhalt der QuelleSalehian, Saman, und Reda R. Mankbadi. „Simulations of rocket launch noise suppression with water injection from impingement pad“. International Journal of Aeroacoustics 19, Nr. 3-5 (Juni 2020): 207–39. http://dx.doi.org/10.1177/1475472x20930653.
Der volle Inhalt der QuelleHassan, O., E. J. Probert, K. Morgan und N. P. Weatherill. „Unsteady flow simulation using unstructured meshes“. Computer Methods in Applied Mechanics and Engineering 189, Nr. 4 (September 2000): 1247–75. http://dx.doi.org/10.1016/s0045-7825(99)00376-x.
Der volle Inhalt der QuelleDissertationen zum Thema "Unsteady simulation"
Smith, Thomas M. „Unsteady simulations of turbulent premixed reacting flows“. Diss., Georgia Institute of Technology, 1998. http://hdl.handle.net/1853/13097.
Der volle Inhalt der QuelleStallard, Timothy J. „Simulation of unsteady viscous flow-structure interaction“. Thesis, University of Oxford, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418130.
Der volle Inhalt der QuelleTaflin, David E. „Numerical simulation of unsteady hypersonic chemically reacting flow /“. Thesis, Connect to this title online; UW restricted, 1995. http://hdl.handle.net/1773/9967.
Der volle Inhalt der QuelleYoung, John Aerospace Civil & Mechanical Engineering Australian Defence Force Academy UNSW. „Numerical simulation of the unsteady aerodynamics of flapping airfoils“. Awarded by:University of New South Wales - Australian Defence Force Academy. School of Aerospace, Civil and Mechanical Engineering, 2005. http://handle.unsw.edu.au/1959.4/38656.
Der volle Inhalt der QuelleSbardella, Luca. „Simulation of unsteady turbomachinery flows for forced response predictions“. Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341913.
Der volle Inhalt der QuelleMossi, Michele. „Simulation of benchmark and industrial unsteady compressible turbulent fluid flows /“. [S.l.] : [s.n.], 1999. http://library.epfl.ch/theses/?nr=1958.
Der volle Inhalt der QuelleDavis, Mallory. „Numerical Simulation of Unsteady Hydrodynamics in the Lower Mississippi River“. ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1126.
Der volle Inhalt der QuellePrendergast, John Michael. „Simulation of unsteady 2-D wind by a vortex method“. Thesis, University of Cambridge, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.612179.
Der volle Inhalt der QuelleLongo, Joel Joseph. „Unsteady Turbomachinery Flow Simulation With Unstructured Grids Using ANSYS Fluent“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1376875053.
Der volle Inhalt der QuelleRuiz, Anthony. „Unsteady Numerical Simulations of Transcritical Turbulent Combustion in Liquid Rocket Engines“. Thesis, Toulouse, INPT, 2012. http://www.theses.fr/2012INPT0009/document.
Der volle Inhalt der QuelleIn the past fifty years, most design parameters of the combustion chamber of Liquid Rocket Engines (LREs) have been adjusted without a detailed understanding of combustion phenomena, because of both limited experimental diagnostics and numerical capabilities. The objective of the present thesis work is to conduct high-fidelity unsteady numerical simulations of transcritical reacting flows, in order to improve the understanding of flame dynamics in LRE, and eventually provide guidelines for their improvement. First real-gas thermodynamics and its impact on numerical schemes are presented. As Large-Eddy Simulation (LES) involves filtered equations, the filtering effects induced by real-gas thermodynamics are then highlighted in a typical 1D transcritical configuration and a specific real-gas artificial dissipation is proposed to smooth transcritical density gradients in LES. Then, a Direct Numerical Simulation (DNS) study of turbulent mixing and combustion in the near-injector region of LREs is conducted. In the non-reacting case, vortex shedding in the wake of the lip of the injector is shown to play a major role in turbulent mixing, and induces the formation of finger-like structures as observed experimentally in similar operating conditions. In the reacting case, the flame is attached to the injector rim without local extinction and the finger-like structures disappear. The flame structure is analyzed and various combustion modes are identified. Finally, a LES study of a transcritical H2/O2 jet flame, issuing from a coaxial injector with and without inner recess, is conducted. Numerical results are first validated against experimental data for the injector without recess. Then, the recessed configuration is compared to the reference solution and to experimental results, to scrutinize the effects of this design parameter on combustion efficiency
Bücher zum Thema "Unsteady simulation"
Srivastava, Rakesh. Simulation of unsteady rotational flow over propfan configuration. [Washington, DC: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenJanus, J. Mark. Unsteady flowfield simulation of ducted prop-fan configurations. Washington, D. C: American Institute of Aeronautics and Astronautics, 1992.
Den vollen Inhalt der Quelle findenSrivastava, Rakesh. Simulation of unsteady rotational flow over propfan configuration. [Washington, DC: National Aeronautics and Space Administration, 1990.
Den vollen Inhalt der Quelle findenJacobs, Peter A. Numerical simulation of transient hypervelocity flow in an expansion tube. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Den vollen Inhalt der Quelle findenJacobs, Peter A. Numerical simulation of transient hypervelocity flow in an expansion tube. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Den vollen Inhalt der Quelle findenJacobs, Peter A. Numerical simulation of transient hypervelocity flow in an expansion tube. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1992.
Den vollen Inhalt der Quelle findenLawrence, C. Unsteady cascade aerodynamic response using a multiphysics simulation code. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2000.
Den vollen Inhalt der Quelle findenDeville, Michel, Thien-Hiep Lê und Yves Morchoisne, Hrsg. Numerical Simulation of 3-D Incompressible Unsteady Viscous Laminar Flows. Wiesbaden: Vieweg+Teubner Verlag, 1992. http://dx.doi.org/10.1007/978-3-663-00221-5.
Der volle Inhalt der QuelleMeakin, Robert L. Domain connectivity among systems of overset grids: Progress report for NASA grant 2-783 submitted to NASA Ames Research Center, Computational Technology Branch ... Vacaville, CA: OMI, 1993.
Den vollen Inhalt der Quelle findenYungster, S. Simulation of unsteady hypersonic combustion around projectiles in an expansion tube. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Unsteady simulation"
Roos Launchbury, David. „Large Eddy Simulation“. In Unsteady Turbulent Flow Modelling and Applications, 3–5. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-11912-6_2.
Der volle Inhalt der QuelleMartelli, Francesco, Elisabetta Belardini und Paolo Adami. „Unsteady Flow Simulation of Turbine Stage“. In Computational Fluid Dynamics 2002, 667–72. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59334-5_101.
Der volle Inhalt der QuelleBenbouta, Najat, Pascal Ferrand und Francis Leboeuf. „Simulation of 3D-Unsteady Internal Flows“. In Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, 91–106. New York, NY: Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4613-9341-2_5.
Der volle Inhalt der QuelleSingh, Mritunjay Kumar, und Priyanka Kumari. „Contaminant Concentration Prediction Along Unsteady Groundwater Flow“. In Simulation Foundations, Methods and Applications, 257–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05657-9_12.
Der volle Inhalt der QuelleLee, Chun-Hian, Yan-Qiu Chen und Ning Zhou. „Finite Element Simulation of Unsteady Separated Flows“. In Separated Flows and Jets, 143–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-84447-8_19.
Der volle Inhalt der QuelleKiris, Cetin C., Dochan Kwak, William Chan und Jeffrey A. Housman. „Unsteady Flow Simulation of High Speed Turbopumps“. In Computational Fluid Dynamics 2006, 777–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-92779-2_122.
Der volle Inhalt der QuelleWächter, M., und G. Sachs. „Unsteady Heat Load Simulation for Hypersonic Cruise Optimization“. In Lecture Notes in Computational Science and Engineering, 325–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-55919-8_36.
Der volle Inhalt der QuelleChetverushkin, Boris N., und Eugene V. Shilnikov. „Unsteady Viscous Flow Simulation Based on QGD System“. In Mathematical Models of Non-Linear Excitations, Transfer, Dynamics, and Control in Condensed Systems and Other Media, 137–46. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4799-0_11.
Der volle Inhalt der QuelleShilnikov, Eugene V. „Parallel Program Complex for 3D Unsteady Flow Simulation“. In Applied Parallel Computing. State of the Art in Scientific Computing, 722–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-75755-9_88.
Der volle Inhalt der QuelleDucros, F., T. Soulères, F. Laporte, P. Moinat, C. Weber, V. Guinot und B. Caruelle. „High-Order Skew-Symmetric Jameson Schemes for Unsteady Compressible Flows“. In Direct and Large-Eddy Simulation III, 417–28. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-015-9285-7_35.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Unsteady simulation"
Madden, T. J., und J. H. Miller. „Unsteady gas laser simulation“. In Proceedings. Users Group Conference. IEEE, 2004. http://dx.doi.org/10.1109/dod_ugc.2004.53.
Der volle Inhalt der QuelleHU, CHIEN-CHUNG, C. LAN und JAY BRANDON. „Unsteady aerodynamic models for maneuvering aircraft“. In Flight Simulation and Technologies. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-3626.
Der volle Inhalt der QuelleYao, Weigang. „Unsteady Aerodynamic Force Modeling via POD“. In AIAA Modeling and Simulation Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-5685.
Der volle Inhalt der QuelleAnanthan, Shreyas, James Baeder, Jayanarayanan Sitaraman, Seonghyeon Hahn und Gianluca Iaccarino. „Hybrid Unsteady Simulation of Helicopters: HUSH“. In 26th AIAA Applied Aerodynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-7339.
Der volle Inhalt der QuelleBond, Derek, und Hamid Johari. „Numerical Simulation of Unsteady Axisymmetric Jets“. In 3rd Theoretical Fluid Mechanics Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2002. http://dx.doi.org/10.2514/6.2002-3081.
Der volle Inhalt der QuelleKuwahara, Kunio. „Unsteady flow simulation and its visualization“. In 30th Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-3405.
Der volle Inhalt der QuelleAdolfo, Dominique, und Carlo Carcasci. „Unsteady simulation of natural gas networks“. In SECOND INTERNATIONAL CONFERENCE ON MATERIAL SCIENCE, SMART STRUCTURES AND APPLICATIONS: ICMSS-2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5138734.
Der volle Inhalt der QuelleTang, Jing. „Numerical simulation of unsteady ship airwakes“. In 2017 7th International Conference on Advanced Design and Manufacturing Engineering (ICADME 2017). Paris, France: Atlantis Press, 2017. http://dx.doi.org/10.2991/icadme-17.2017.3.
Der volle Inhalt der QuelleGreber, Isaac. „Molecular dynamics simulation of unsteady diffusion“. In RAREFIED GAS DYNAMICS: 22nd International Symposium. AIP, 2001. http://dx.doi.org/10.1063/1.1407588.
Der volle Inhalt der QuelleATWOOD, CHRISTOPHER. „An upwind approach to unsteady flowfield simulation“. In Flight Simulation Technologies Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-3100.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Unsteady simulation"
Tsynkov, S. V. Artificial Boundary Conditions for the Numerical Simulation of Unsteady Electromagnetic Waves. Fort Belvoir, VA: Defense Technical Information Center, Januar 2003. http://dx.doi.org/10.21236/ada454447.
Der volle Inhalt der QuelleMarcum, David L. Computational Simulation of Unsteady, Viscous, Hypersonic Flow about Flight Vehicles with Store Separation. Fort Belvoir, VA: Defense Technical Information Center, Februar 2001. http://dx.doi.org/10.21236/ada387492.
Der volle Inhalt der QuelleYou, Donghyun, William Bromby und Adamandios Sifounakis. Large-Eddy Simulation Analysis of Unsteady Separation Over a Pitching Airfoil at High Reynolds Number. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2013. http://dx.doi.org/10.21236/ada608653.
Der volle Inhalt der QuelleJameson, Antony, und Peter E. Vincent. High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks. Fort Belvoir, VA: Defense Technical Information Center, Juni 2010. http://dx.doi.org/10.21236/ada563587.
Der volle Inhalt der QuelleKokes, Joseph, Mark Costello und Jubaraj Sahu. Generating an Aerodynamic Model for Projectile Flight Simulation Using Unsteady, Time Accurate Computational Fluid Dynamic Results. Fort Belvoir, VA: Defense Technical Information Center, September 2006. http://dx.doi.org/10.21236/ada457421.
Der volle Inhalt der QuelleDuque, Earl, Steve Legensky, Brad Whitlock, David Rogers, Andrew Bauer, Scott Imlay, David Thompson und Seiji Tsutsumi. Summary of the SciTech 2020 Technical Panel on In Situ/In Transit Computational Environments for Visualization and Data Analysis. Engineer Research and Development Center (U.S.), Juni 2021. http://dx.doi.org/10.21079/11681/40887.
Der volle Inhalt der QuelleRahai, Hamid, und Assma Begum. Numerical Investigations of Transient Wind Shear from Passing Vehicles Near a Road Structure (Part I: Unsteady Reynolds-Averaged Navier-Stokes Simulations). Mineta Transportation Institute, Januar 2021. http://dx.doi.org/10.31979/mti.2020.1933.
Der volle Inhalt der QuelleEdoh, Ayaboe, Ann Karagozian, Charles Merkle und Venkateswaran Sankaran. Investigation of Optimal Numerical Methods for High Reynolds Number Unsteady Simulations (Briefing Charts). Fort Belvoir, VA: Defense Technical Information Center, April 2014. http://dx.doi.org/10.21236/ada614100.
Der volle Inhalt der QuelleHarmon, C. B., und William Dieterich. A 3-Degree-of-Freedom Flight Simulator Evaluation of Unsteady Aerodynamics Effects. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada241540.
Der volle Inhalt der QuelleSahu, Jubaraj, Frank Fresconi und Karen R. Heavey. Unsteady Aerodynamic Simulations of a Finned Projectile at a Supersonic Speed With Jet Interaction. Fort Belvoir, VA: Defense Technical Information Center, Juni 2014. http://dx.doi.org/10.21236/ada606268.
Der volle Inhalt der Quelle