Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Unknown classes detection (Open-Set Recognition)“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Unknown classes detection (Open-Set Recognition)" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Unknown classes detection (Open-Set Recognition)"
Xu, Baile, Furao Shen und Jian Zhao. „Contrastive Open Set Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 37, Nr. 9 (26.06.2023): 10546–56. http://dx.doi.org/10.1609/aaai.v37i9.26253.
Der volle Inhalt der QuelleXia, Ziheng, Penghui Wang und Hongwei Liu. „Radar HRRP Open Set Target Recognition Based on Closed Classification Boundary“. Remote Sensing 15, Nr. 2 (12.01.2023): 468. http://dx.doi.org/10.3390/rs15020468.
Der volle Inhalt der QuelleHalász, András Pál, Nawar Al Hemeary, Lóránt Szabolcs Daubner, Tamás Zsedrovits und Kálmán Tornai. „Improving the Performance of Open-Set Recognition with Generated Fake Data“. Electronics 12, Nr. 6 (09.03.2023): 1311. http://dx.doi.org/10.3390/electronics12061311.
Der volle Inhalt der QuelleZhang, Yuhang, Yue Yao, Xuannan Liu, Lixiong Qin, Wenjing Wang und Weihong Deng. „Open-Set Facial Expression Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 38, Nr. 1 (24.03.2024): 646–54. http://dx.doi.org/10.1609/aaai.v38i1.27821.
Der volle Inhalt der QuelleZhou, Yu, Song Shang, Xing Song, Shiyu Zhang, Tianqi You und Linrang Zhang. „Intelligent Radar Jamming Recognition in Open Set Environment Based on Deep Learning Networks“. Remote Sensing 14, Nr. 24 (08.12.2022): 6220. http://dx.doi.org/10.3390/rs14246220.
Der volle Inhalt der QuelleVázquez-Santiago, Diana-Itzel, Héctor-Gabriel Acosta-Mesa und Efrén Mezura-Montes. „Vehicle Make and Model Recognition as an Open-Set Recognition Problem and New Class Discovery“. Mathematical and Computational Applications 28, Nr. 4 (03.07.2023): 80. http://dx.doi.org/10.3390/mca28040080.
Der volle Inhalt der QuelleCai, Jiarui, Yizhou Wang, Hung-Min Hsu, Jenq-Neng Hwang, Kelsey Magrane und Craig S. Rose. „LUNA: Localizing Unfamiliarity Near Acquaintance for Open-Set Long-Tailed Recognition“. Proceedings of the AAAI Conference on Artificial Intelligence 36, Nr. 1 (28.06.2022): 131–39. http://dx.doi.org/10.1609/aaai.v36i1.19887.
Der volle Inhalt der QuelleYou, Jie, und Joonwhoan Lee. „Open-Set Recognition of Pansori Rhythm Patterns Based on Audio Segmentation“. Applied Sciences 14, Nr. 16 (06.08.2024): 6893. http://dx.doi.org/10.3390/app14166893.
Der volle Inhalt der QuelleCi, Wenyan, Tianxiang Xu, Runze Lin und Shan Lu. „A Novel Method for Unexpected Obstacle Detection in the Traffic Environment Based on Computer Vision“. Applied Sciences 12, Nr. 18 (06.09.2022): 8937. http://dx.doi.org/10.3390/app12188937.
Der volle Inhalt der QuelleDale, John M., und Leon N. Klatt. „Principal Component Analysis of Diffuse Near-Infrared Reflectance Data from Paper Currency“. Applied Spectroscopy 43, Nr. 8 (November 1989): 1399–405. http://dx.doi.org/10.1366/0003702894204470.
Der volle Inhalt der QuelleDissertationen zum Thema "Unknown classes detection (Open-Set Recognition)"
Christoffel, Quentin. „Apprentissage de représentation différenciées dans des modèles d’apprentissage profond : détection de classes inconnues et interprétabilité“. Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD027.
Der volle Inhalt der QuelleDeep learning, and particularly convolutional neural networks, has revolutionized numerous fields such as computer vision. However, these models remain limited when encountering data from unknown classes (never seen during training) and often suffer from a lack of interpretability. We proposed a method aimed at directly optimizing the representation space learned by the model. Each dimension of the representation is associated with a known class. A dimension is activated with a specific value when the model faces the associated class, meaning that certain features have been detected in the image. This allows the model to detect unknown data by their distinct representation from known data, as they should not share the same features. Our approach also promotes semantic relationships within the representation space by allocating a subspace to each known class. Moreover, a degree of interpretability is achieved by analysing the activated dimensions for a given image, enabling an understanding of which features of which class are detected. This thesis details the development and evaluation of our method across multiple iterations, each aimed at improving performance and addressing identified limitations through interpretability, such as the correlation of extracted features. The results obtained on an unknown class detection benchmark show a notable improvement in performance between our versions, although they remain below the state-of-the-art
Buchteile zum Thema "Unknown classes detection (Open-Set Recognition)"
Kao, Hao, Thanh-Tuan Nguyen, Chin-Shiuh Shieh, Mong-Fong Horng, Lee Yu Xian und Denis Miu. „Unknown DDoS Attack Detection Using Open-Set Recognition Technology and Fuzzy C-Means Clustering“. In Lecture Notes in Electrical Engineering, 366–80. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-9412-0_38.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Unknown classes detection (Open-Set Recognition)"
Brignac, Daniel, und Abhijit Mahalanobis. „Cascading Unknown Detection With Known Classification For Open Set Recognition“. In 2024 IEEE International Conference on Image Processing (ICIP), 652–58. IEEE, 2024. http://dx.doi.org/10.1109/icip51287.2024.10648239.
Der volle Inhalt der QuelleChe, Yongjuan, Yuexuan An und Hui Xue. „Boosting Few-Shot Open-Set Recognition with Multi-Relation Margin Loss“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/390.
Der volle Inhalt der QuelleHaoyang, Liu, Yaojin Lin, Peipei Li, Jun Hu und Xuegang Hu. „Class-Specific Semantic Generation and Reconstruction Learning for Open Set Recognition“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/226.
Der volle Inhalt der QuelleXu, Shuyuan, Linsen Li, Hangjun Yang und Junhua Tang. „KCC Method: Unknown Intrusion Detection Based on Open Set Recognition“. In 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2021. http://dx.doi.org/10.1109/ictai52525.2021.00213.
Der volle Inhalt der QuelleYang, Haifeng, Chuanxing Geng, Pong C. Yuen und Songcan Chen. „Dynamic against Dynamic: An Open-Set Self-Learning Framework“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/587.
Der volle Inhalt der QuelleZhang, Qin, Zelin Shi, Xiaolin Zhang, Xiaojun Chen, Philippe Fournier-Viger und Shirui Pan. „G2Pxy: Generative Open-Set Node Classification on Graphs with Proxy Unknowns“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/509.
Der volle Inhalt der QuelleLoboda, Igor, Juan Luis Pérez-Ruiz, Sergiy Yepifanov und Roman Zelenskyi. „Comparative Analysis of Two Gas Turbine Diagnosis Approaches“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91644.
Der volle Inhalt der QuelleNunes, Ian, Hugo Oliveira und Marcus Poggi. „Open-set semantic segmentation for remote sensing images“. In Anais Estendidos da Conference on Graphics, Patterns and Images, 22–28. Sociedade Brasileira de Computação - SBC, 2024. https://doi.org/10.5753/sibgrapi.est.2024.31640.
Der volle Inhalt der QuelleLiu, Jiaming, Yangqiming Wang, Tongze Zhang, Yulu Fan, Qinli Yang und Junming Shao. „Open-world Semi-supervised Novel Class Discovery“. In Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/445.
Der volle Inhalt der Quelle