Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Unit multiple interval graphs.

Zeitschriftenartikel zum Thema „Unit multiple interval graphs“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Unit multiple interval graphs" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Ardévol Martínez, Virginia, Romeo Rizzi, Florian Sikora und Stéphane Vialette. „Recognizing unit multiple interval graphs is hard“. Discrete Applied Mathematics 360 (Januar 2025): 258–74. http://dx.doi.org/10.1016/j.dam.2024.09.011.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Cardoza, Jacqueline E., Carina J. Gronlund, Justin Schott, Todd Ziegler, Brian Stone und Marie S. O’Neill. „Heat-Related Illness Is Associated with Lack of Air Conditioning and Pre-Existing Health Problems in Detroit, Michigan, USA: A Community-Based Participatory Co-Analysis of Survey Data“. International Journal of Environmental Research and Public Health 17, Nr. 16 (07.08.2020): 5704. http://dx.doi.org/10.3390/ijerph17165704.

Der volle Inhalt der Quelle
Annotation:
The objective of the study was to investigate, using academic-community epidemiologic co-analysis, the odds of reported heat-related illness for people with (1) central air conditioning (AC) or window unit AC versus no AC, and (2) fair/poor vs. good/excellent reported health. From 2016 to 2017, 101 Detroit residents were surveyed once regarding extreme heat, housing and neighborhood features, and heat-related illness in the prior 5 years. Academic partners selected initial confounders and, after instruction on directed acyclic graphs, community partners proposed alternate directed acyclic graphs with additional confounders. Heat-related illness was regressed on AC type or health and co-selected confounders. The study found that heat-related illness was associated with no-AC (n = 96, odds ratio (OR) = 4.66, 95% confidence interval (CI) = 1.22, 17.72); living ≤5 years in present home (n = 57, OR = 10.39, 95% CI = 1.13, 95.88); and fair/poor vs. good/excellent health (n = 97, OR = 3.15, 95% CI = 1.33, 7.48). Co-analysis suggested multiple built-environment confounders. We conclude that Detroit residents with poorer health and no AC are at greater risk during extreme heat. Academic-community co-analysis using directed acyclic graphs enhances research on community-specific social and health vulnerabilities by identifying key confounders and future research directions for rigorous and impactful research.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Rautenbach, Dieter, und Jayme L. Szwarcfiter. „Unit Interval Graphs“. Electronic Notes in Discrete Mathematics 38 (Dezember 2011): 737–42. http://dx.doi.org/10.1016/j.endm.2011.10.023.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Dourado, Mitre C., Van Bang Le, Fábio Protti, Dieter Rautenbach und Jayme L. Szwarcfiter. „Mixed unit interval graphs“. Discrete Mathematics 312, Nr. 22 (November 2012): 3357–63. http://dx.doi.org/10.1016/j.disc.2012.07.037.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Grippo, Luciano N. „Characterizing interval graphs which are probe unit interval graphs“. Discrete Applied Mathematics 262 (Juni 2019): 83–95. http://dx.doi.org/10.1016/j.dam.2019.02.022.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kulik, Anatoliy, Sergey Pasichnik und Dmytro Sokol. „MODELING OF PHYSICAL PROCESSES OF ENERGY CONVERSION IN SMALL-SIZED VORTEX ENERGY SEPARATORS“. Aerospace technic and technology, Nr. 1 (26.02.2021): 20–30. http://dx.doi.org/10.32620/aktt.2021.1.03.

Der volle Inhalt der Quelle
Annotation:
The object of study in the article is the vortex effect of temperature separation in a rotating gas flow, which is realized in small-sized vortex energy separators. The subject matter is the models that describe the physical processes of energy conversion in small-sized vortex energy separators as objects of automatic control. The goal is to obtain models of a vortex energy separator reflecting its static and dynamic properties as an automatic control object. The tasks to be solved are: to develop a three-dimensional computer model of a small-sized vortex energy separator which will allow analyzing the parameters of the gas flow and physical processes of energy conversion directly inside the object and obtaining its static characteristics. A linearization method of static characteristics on the interval of input and output values is proposed which will expand the operating range without loss of linearization accuracy. A method of structural-parametric identification based on experimental logarithmic magnitude-frequency characteristics is proposed which will allow for the same set of experimental points to select the structure of the mathematical model of varying complexity depending on the specified accuracy. As a result of the work, the scheme for modeling the automatic control object was formed, consisting of the drive unit, sensor unit, and vortex energy separator, with the reflection of all the obtained operating modes. The methods used are the method of graphic linearization, Laplace transform, structural-parametric identification. The following results were obtained: a computer and linearized mathematical model of the small-sized vortex energy separator as an automatic control object reflecting its properties in the time and frequency domains was obtained. A comparative analysis of the reactions of the model and the real object to the same input action was carried out. Conclusions. The scientific novelty of the results obtained is as follows: 1) multiple graphic linearizations of one static characteristic to use the full range of the operation mode of vortex energy separator, which distinguishes it from the known;2) mathematical model structural-parametric identification for vortex energy separator with the help of known points of the Bode magnitude plots by using the interpolation polynomial and its derivatives graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Le, Van Bang, und Dieter Rautenbach. „Integral mixed unit interval graphs“. Discrete Applied Mathematics 161, Nr. 7-8 (Mai 2013): 1028–36. http://dx.doi.org/10.1016/j.dam.2012.09.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Jinjiang, Yuan, und Zhou Sanming. „Optimal labelling of unit interval graphs“. Applied Mathematics 10, Nr. 3 (September 1995): 337–44. http://dx.doi.org/10.1007/bf02662875.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Marx, Dániel. „Precoloring extension on unit interval graphs“. Discrete Applied Mathematics 154, Nr. 6 (April 2006): 995–1002. http://dx.doi.org/10.1016/j.dam.2005.10.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Lin, Min Chih, Francisco J. Soulignac und Jayme L. Szwarcfiter. „Short Models for Unit Interval Graphs“. Electronic Notes in Discrete Mathematics 35 (Dezember 2009): 247–55. http://dx.doi.org/10.1016/j.endm.2009.11.041.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Rautenbach, Dieter, und Jayme L. Szwarcfiter. „Unit and single point interval graphs“. Discrete Applied Mathematics 160, Nr. 10-11 (Juli 2012): 1601–9. http://dx.doi.org/10.1016/j.dam.2012.02.014.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Richerby, David. „Interval bigraphs are unit grid intersection graphs“. Discrete Mathematics 309, Nr. 6 (April 2009): 1718–19. http://dx.doi.org/10.1016/j.disc.2008.02.006.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Durán, G., F. Fernández Slezak, L. N. Grippo, F. de S. Oliveira und J. Szwarcfiter. „On unit interval graphs with integer endpoints“. Electronic Notes in Discrete Mathematics 50 (Dezember 2015): 445–50. http://dx.doi.org/10.1016/j.endm.2015.07.074.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Joos, Felix. „A Characterization of Mixed Unit Interval Graphs“. Journal of Graph Theory 79, Nr. 4 (25.09.2014): 267–81. http://dx.doi.org/10.1002/jgt.21831.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Butman, Ayelet, Danny Hermelin, Moshe Lewenstein und Dror Rawitz. „Optimization problems in multiple-interval graphs“. ACM Transactions on Algorithms 6, Nr. 2 (März 2010): 1–18. http://dx.doi.org/10.1145/1721837.1721856.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Khakimov, Erik R., und Igor N. Suleymanov. „MODELING OF THE CONTROL MODULE OF ROUTING AND SWITCHING EQUIPMENT“. Electrical and data processing facilities and systems 20, Nr. 3 (2024): 107–16. http://dx.doi.org/10.17122/1999-5458-2024-20-3-107-116.

Der volle Inhalt der Quelle
Annotation:
Relevance The work is devoted to solving the problem for the field of network communications – modeling the operation and internal processes of the control module with the architecture of work tied to machine cycles. With increasing complexity and volume of network equipment in modern telecommunication systems the need for more energy efficient devices and the possibility of clear and accurate monitoring of readings in order to identify and prevent accidents, breakdowns, data loss and many other emergencies that can occur during operation and load devices. The modeling of the control modules being developed will reduce various costs, as well as improve the efficiency and reliability of both individual devices and multiple devices combined into large systems. Aim of research Review of methods followed by modeling of control module for routing and switching equipment. Sample analysis of simulation results. Research methods The data used for the research is based on the characteristics of the control module being developed in the customer's company. The first stage of the work is presented in the form of a brief review of existing and suitable methods for the task, as well as justification of specific selected modeling methods and their theoretical description. At the second stage, a schematic of the modeled module is created, computational tests of the model under different input parameters are performed using the Python programming language, graphs and sampling are created, and the model and the final conclusions obtained are explained. Results The paper proposes a methodology for modeling and computation of a control module for network equipment. The choice of tools and mathematical methods is based on the analysis of the subject area and taking into account the ratio of the accuracy of the physical unit model to the resources consumed for modeling and computation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Lam, Peter Che Bor, Tao-Ming Wang, Wai Chee Shiu und Guohua Gu. „ON DISTANCE TWO LABELLING OF UNIT INTERVAL GRAPHS“. Taiwanese Journal of Mathematics 13, Nr. 4 (August 2009): 1167–79. http://dx.doi.org/10.11650/twjm/1500405499.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Corneil, Derek G., Hiryoung Kim, Sridhar Natarajan, Stephan Olariu und Alan P. Sprague. „Simple linear time recognition of unit interval graphs“. Information Processing Letters 55, Nr. 2 (Juli 1995): 99–104. http://dx.doi.org/10.1016/0020-0190(95)00046-f.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Apke, A., und R. Schrader. „On the non-unit count of interval graphs“. Discrete Applied Mathematics 195 (November 2015): 2–7. http://dx.doi.org/10.1016/j.dam.2014.11.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Rautenbach, Dieter, und Jayme L. Szwarcfiter. „Unit Interval Graphs of Open and Closed Intervals“. Journal of Graph Theory 72, Nr. 4 (18.06.2012): 418–29. http://dx.doi.org/10.1002/jgt.21650.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Talon, Alexandre, und Jan Kratochvíl. „Completion of the mixed unit interval graphs hierarchy“. Journal of Graph Theory 87, Nr. 3 (08.06.2017): 317–32. http://dx.doi.org/10.1002/jgt.22159.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Durán, Guillermo, Luciano N. Grippo und Martín D. Safe. „Probe interval and probe unit interval graphs on superclasses of cographs“. Electronic Notes in Discrete Mathematics 37 (August 2011): 339–44. http://dx.doi.org/10.1016/j.endm.2011.05.058.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Bodlaender, Hans L., Ton Kloks und Rolf Niedermeier. „SIMPLE MAX-CUT for unit interval graphs and graphs with few P4s“. Electronic Notes in Discrete Mathematics 3 (Mai 1999): 19–26. http://dx.doi.org/10.1016/s1571-0653(05)80014-9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

BODLAENDER, H., T. KLOKS und R. NIEDERMEIER. „SIMPLE MAX-CUT for unit interval graphs and graphs with few s“. Electronic Notes in Discrete Mathematics 3 (April 2000): 1–8. http://dx.doi.org/10.1016/s1571-0653(05)00726-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Gyárfás, A. „On the chromatic number of multiple interval graphs and overlap graphs“. Discrete Mathematics 55, Nr. 2 (Juli 1985): 161–66. http://dx.doi.org/10.1016/0012-365x(85)90044-5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Xu, Xiao, Sattar Vakili, Qing Zhao und Ananthram Swami. „Multi-Armed Bandits on Partially Revealed Unit Interval Graphs“. IEEE Transactions on Network Science and Engineering 7, Nr. 3 (01.07.2020): 1453–65. http://dx.doi.org/10.1109/tnse.2019.2935256.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Lozin, Vadim V., und Colin Mayhill. „Canonical Antichains of Unit Interval and Bipartite Permutation Graphs“. Order 28, Nr. 3 (13.11.2010): 513–22. http://dx.doi.org/10.1007/s11083-010-9188-7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Klavík, Pavel, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell und Tomáš Vyskočil. „Extending Partial Representations of Proper and Unit Interval Graphs“. Algorithmica 77, Nr. 4 (25.02.2016): 1071–104. http://dx.doi.org/10.1007/s00453-016-0133-z.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Brown, David E., J. Richard Lundgren und Li Sheng. „A characterization of cycle-free unit probe interval graphs“. Discrete Applied Mathematics 157, Nr. 4 (Februar 2009): 762–67. http://dx.doi.org/10.1016/j.dam.2008.07.004.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

Gardi, Frédéric. „The Roberts characterization of proper and unit interval graphs“. Discrete Mathematics 307, Nr. 22 (Oktober 2007): 2906–8. http://dx.doi.org/10.1016/j.disc.2006.04.043.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Francis, Mathew C., Daniel Gonçalves und Pascal Ochem. „The Maximum Clique Problem in Multiple Interval Graphs“. Algorithmica 71, Nr. 4 (11.09.2013): 812–36. http://dx.doi.org/10.1007/s00453-013-9828-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Troxell, Denise Sakai. „On properties of unit interval graphs with a perceptual motivation“. Mathematical Social Sciences 30, Nr. 1 (August 1995): 1–22. http://dx.doi.org/10.1016/0165-4896(94)00777-6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Troxell, D. S. „On properties of unit interval graphs with a perceptual motivation“. Mathematical Social Sciences 31, Nr. 1 (Februar 1996): 62. http://dx.doi.org/10.1016/0165-4896(96)88694-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Park, Jung-Heum, Joonsoo Choi und Hyeong-Seok Lim. „Algorithms for finding disjoint path covers in unit interval graphs“. Discrete Applied Mathematics 205 (Mai 2016): 132–49. http://dx.doi.org/10.1016/j.dam.2015.12.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

Durán, G., F. Fernández Slezak, L. N. Grippo, F. de S. Oliveira und J. L. Szwarcfiter. „Recognition and characterization of unit interval graphs with integer endpoints“. Discrete Applied Mathematics 245 (August 2018): 168–76. http://dx.doi.org/10.1016/j.dam.2017.04.013.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

KIYOMI, MASASHI, TOSHIKI SAITOH und RYUHEI UEHARA. „BIPARTITE PERMUTATION GRAPHS ARE RECONSTRUCTIBLE“. Discrete Mathematics, Algorithms and Applications 04, Nr. 03 (06.08.2012): 1250039. http://dx.doi.org/10.1142/s1793830912500395.

Der volle Inhalt der Quelle
Annotation:
The graph reconstruction conjecture is a long-standing open problem in graph theory. The conjecture has been verified for all graphs with at most 11 vertices. Further, the conjecture has been verified for regular graphs, trees, disconnected graphs, unit interval graphs, separable graphs with no pendant vertex, outer-planar graphs, and unicyclic graphs. We extend the list of graph classes for which the conjecture holds. We give a proof that bipartite permutation graphs are reconstructible.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

GEBAUER, HEIDI, und YOSHIO OKAMOTO. „FAST EXPONENTIAL-TIME ALGORITHMS FOR THE FOREST COUNTING AND THE TUTTE POLYNOMIAL COMPUTATION IN GRAPH CLASSES“. International Journal of Foundations of Computer Science 20, Nr. 01 (Februar 2009): 25–44. http://dx.doi.org/10.1142/s0129054109006437.

Der volle Inhalt der Quelle
Annotation:
We prove # P -completeness for counting the number of forests in regular graphs and chordal graphs. We also present algorithms for this problem, running in O *(1.8494m) time for 3-regular graphs, and O *(1.9706m) time for unit interval graphs, where m is the number of edges in the graph and O *-notation ignores a polynomial factor. The algorithms can be generalized to the Tutte polynomial computation.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

González, Antonio, und María Luz Puertas. „Removing Twins in Graphs to Break Symmetries“. Mathematics 7, Nr. 11 (15.11.2019): 1111. http://dx.doi.org/10.3390/math7111111.

Der volle Inhalt der Quelle
Annotation:
Determining vertex subsets are known tools to provide information about automorphism groups of graphs and, consequently about symmetries of graphs. In this paper, we provide both lower and upper bounds of the minimum size of such vertex subsets, called the determining number of the graph. These bounds, which are performed for arbitrary graphs, allow us to compute the determining number in two different graph families such are cographs and unit interval graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

GOLUMBIC, MARTIN CHARLES, und UDI ROTICS. „ON THE CLIQUE-WIDTH OF SOME PERFECT GRAPH CLASSES“. International Journal of Foundations of Computer Science 11, Nr. 03 (September 2000): 423–43. http://dx.doi.org/10.1142/s0129054100000260.

Der volle Inhalt der Quelle
Annotation:
Graphs of clique–width at most k were introduced by Courcelle, Engelfriet and Rozenberg (1993) as graphs which can be defined by k-expressions based on graph operations which use k vertex labels. In this paper we study the clique–width of perfect graph classes. On one hand, we show that every distance–hereditary graph, has clique–width at most 3, and a 3–expression defining it can be obtained in linear time. On the other hand, we show that the classes of unit interval and permutation graphs are not of bounded clique–width. More precisely, we show that for every [Formula: see text] there is a unit interval graph In and a permutation graph Hn having n2 vertices, each of whose clique–width is at least n. These results allow us to see the border within the hierarchy of perfect graphs between classes whose clique–width is bounded and classes whose clique–width is unbounded. Finally we show that every n×n square grid, [Formula: see text], n ≥ 3, has clique–width exactly n+1.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
40

Jiang, Minghui, und Yong Zhang. „Parameterized complexity in multiple-interval graphs: Domination, partition, separation, irredundancy“. Theoretical Computer Science 461 (November 2012): 27–44. http://dx.doi.org/10.1016/j.tcs.2012.01.025.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
41

Takaoka, Asahi. „Complexity of Hamiltonian Cycle Reconfiguration“. Algorithms 11, Nr. 9 (17.09.2018): 140. http://dx.doi.org/10.3390/a11090140.

Der volle Inhalt der Quelle
Annotation:
The Hamiltonian cycle reconfiguration problem asks, given two Hamiltonian cycles C 0 and C t of a graph G, whether there is a sequence of Hamiltonian cycles C 0 , C 1 , … , C t such that C i can be obtained from C i − 1 by a switch for each i with 1 ≤ i ≤ t , where a switch is the replacement of a pair of edges u v and w z on a Hamiltonian cycle with the edges u w and v z of G, given that u w and v z did not appear on the cycle. We show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete, settling an open question posed by Ito et al. (2011) and van den Heuvel (2013). More precisely, we show that the Hamiltonian cycle reconfiguration problem is PSPACE-complete for chordal bipartite graphs, strongly chordal split graphs, and bipartite graphs with maximum degree 6. Bipartite permutation graphs form a proper subclass of chordal bipartite graphs, and unit interval graphs form a proper subclass of strongly chordal graphs. On the positive side, we show that, for any two Hamiltonian cycles of a bipartite permutation graph and a unit interval graph, there is a sequence of switches transforming one cycle to the other, and such a sequence can be obtained in linear time.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
42

Fekete, Sándor P., und Phillip Keldenich. „Conflict-Free Coloring of Intersection Graphs“. International Journal of Computational Geometry & Applications 28, Nr. 03 (September 2018): 289–307. http://dx.doi.org/10.1142/s0218195918500085.

Der volle Inhalt der Quelle
Annotation:
A conflict-free[Formula: see text]-coloring of a graph [Formula: see text] assigns one of [Formula: see text] different colors to some of the vertices such that, for every vertex [Formula: see text], there is a color that is assigned to exactly one vertex among [Formula: see text] and [Formula: see text]’s neighbors. Such colorings have applications in wireless networking, robotics, and geometry, and are well studied in graph theory. Here we study the conflict-free coloring of geometric intersection graphs. We demonstrate that the intersection graph of [Formula: see text] geometric objects without fatness properties and size restrictions may have conflict-free chromatic number in [Formula: see text] and in [Formula: see text] for disks or squares of different sizes; it is known for general graphs that the worst case is in [Formula: see text]. For unit-disk intersection graphs, we prove that it is NP-complete to decide the existence of a conflict-free coloring with one color; we also show that six colors always suffice, using an algorithm that colors unit disk graphs of restricted height with two colors. We conjecture that four colors are sufficient, which we prove for unit squares instead of unit disks. For interval graphs, we establish a tight worst-case bound of two.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
43

Soulignac, Francisco J. „Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. Chapter I: theory“. Journal of Graph Algorithms and Applications 21, Nr. 4 (2017): 455–89. http://dx.doi.org/10.7155/jgaa.00425.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
44

Soulignac, Francisco J. „Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. Chapter II: algorithms“. Journal of Graph Algorithms and Applications 21, Nr. 4 (2017): 491–525. http://dx.doi.org/10.7155/jgaa.00426.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
45

Das, Sankar, Ganesh Ghorai und Madhumangal Pal. „Picture fuzzy tolerance graphs with application“. Complex & Intelligent Systems 8, Nr. 1 (30.09.2021): 541–54. http://dx.doi.org/10.1007/s40747-021-00540-5.

Der volle Inhalt der Quelle
Annotation:
AbstractIn this study, the notions of picture fuzzy tolerance graphs, picture fuzzy interval containment graphs and picture fuzzy $$\phi $$ ϕ -tolerance graphs are established. Three special types of picture fuzzy tolerance graphs having bounded representations are introduced and studied corresponding properties of them taking $$\phi $$ ϕ as max, min and sum functions. Also, picture fuzzy proper and unit tolerance graphs are established and some related results are investigated. The class of picture fuzzy $$\phi $$ ϕ -tolerance chaingraphs which is the picture fuzzy $$\phi $$ ϕ -tolerance graphs of a nested family of picture fuzzy intervals are presented. A real-life application in sports competition is modeled using picture fuzzy min-tolerance graph. Also a comparison is given between picture fuzzy tolerance graphs and intuitionistic fuzzy tolerance graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
46

Calero-Sanz, Jorge. „On the Degree Distribution of Haros Graphs“. Mathematics 11, Nr. 1 (26.12.2022): 92. http://dx.doi.org/10.3390/math11010092.

Der volle Inhalt der Quelle
Annotation:
Haros graphs are a graph-theoretical representation of real numbers in the unit interval. The degree distribution of the Haros graphs provides information regarding the topological structure and the associated real number. This article provides a comprehensive demonstration of a conjecture concerning the analytical formulation of the degree distribution. Specifically, a theorem outlines the relationship between Haros graphs, the corresponding continued fraction of its associated real number, and the subsequent symbolic paths in the Farey binary tree. Moreover, an expression that is continuous and piecewise linear in subintervals defined by Farey fractions can be derived from an additional conclusion for the degree distribution of Haros graphs.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
47

Corneil, Derek G. „A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs“. Discrete Applied Mathematics 138, Nr. 3 (April 2004): 371–79. http://dx.doi.org/10.1016/j.dam.2003.07.001.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
48

Korotyaev, Evgeny, und Natalia Saburova. „Scattering on periodic metric graphs“. Reviews in Mathematical Physics 32, Nr. 08 (13.02.2020): 2050024. http://dx.doi.org/10.1142/s0129055x20500245.

Der volle Inhalt der Quelle
Annotation:
We consider the Laplacian on a periodic metric graph and obtain its decomposition into a direct fiber integral in terms of the corresponding discrete Laplacian. Eigenfunctions and eigenvalues of the fiber metric Laplacian are expressed explicitly in terms of eigenfunctions and eigenvalues of the corresponding fiber discrete Laplacian and eigenfunctions of the Dirichlet problem on the unit interval. We show that all these eigenfunctions are uniformly bounded. We apply these results to the periodic metric Laplacian perturbed by real integrable potentials. We prove the following: (a) the wave operators exist and are complete, (b) the standard Fredholm determinant is well-defined and is analytic in the upper half-plane without any modification for any dimension, (c) the determinant and the corresponding S-matrix satisfy the Birman–Krein identity.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
49

Khabyah, Ali Al, Haseeb Ahmad, Ali Ahmad und Ali N. A. Koam. „A uniform interval-valued intuitionistic fuzzy environment: topological descriptors and their application in neural networks“. AIMS Mathematics 9, Nr. 10 (2024): 28792–812. http://dx.doi.org/10.3934/math.20241397.

Der volle Inhalt der Quelle
Annotation:
<p>The concept of being uniform strong interval-valued intuitionistic fuzzy (also termed as USIVIF) is an integration of two ideologies, which are called "uniformity" and "strong interval-valued intuitionistic fuzzy sets". Inspired by the study on uniform fuzzy topological indices, it is natural to introduce uniform IVIFTIs. Originally, topological indices were generalized for the fuzzy sets However, the utilization of the interval-valued intuitionistic fuzzy topological indices provides a finer approach, especially if there are multiple uncertainties based on intervals. Consequently, both theories imply that topological indices are not fixed and depend on certain situations or problems in the question. In this article, the generalized results for the uniform degree of the fuzzy sets associated with individual vertices/edges of strong interval-valued intuitionistic fuzzy graphs were presented and results for the total uniform degree of such graphs were also included. In addition, the nature of the implemented methods and models was discussed based on the cellular neural interval-valued intuitionistic fuzzy graphs of sets of membership and non-membership values.</p>
APA, Harvard, Vancouver, ISO und andere Zitierweisen
50

Bartlett, Sara M., John T. Rapp und Marissa L. Henrickson. „Detecting False Positives in Multielement Designs“. Behavior Modification 35, Nr. 6 (26.08.2011): 531–52. http://dx.doi.org/10.1177/0145445511415396.

Der volle Inhalt der Quelle
Annotation:
The authors assessed the extent to which multielement designs produced false positives using continuous duration recording (CDR) and interval recording with 10-s and 1-min interval sizes. Specifically, they created 6,000 graphs with multielement designs that varied in the number of data paths, and the number of data points per data path, using a random number generator. In Experiment 1, the authors visually analyzed the graphs for the occurrence of false positives. Results indicated that graphs depicting only two sessions for each condition (e.g., a control condition plotted with multiple test conditions) produced the highest percentage of false positives for CDR and interval recording with 10-s and 1-min intervals. Conversely, graphs with four or five sessions for each condition produced the lowest percentage of false positives for each method. In Experiment 2, they applied two new rules, which were intended to decrease false positives, to each graph that depicted a false positive in Experiment 1. Results showed that application of new rules decreased false positives to less than 5% for all of the graphs except for those with two data paths and two data points per data path. Implications for brief assessments are discussed.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie