Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Unit multiple interval graphs“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Unit multiple interval graphs" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Unit multiple interval graphs"
Ardévol Martínez, Virginia, Romeo Rizzi, Florian Sikora und Stéphane Vialette. „Recognizing unit multiple interval graphs is hard“. Discrete Applied Mathematics 360 (Januar 2025): 258–74. http://dx.doi.org/10.1016/j.dam.2024.09.011.
Der volle Inhalt der QuelleCardoza, Jacqueline E., Carina J. Gronlund, Justin Schott, Todd Ziegler, Brian Stone und Marie S. O’Neill. „Heat-Related Illness Is Associated with Lack of Air Conditioning and Pre-Existing Health Problems in Detroit, Michigan, USA: A Community-Based Participatory Co-Analysis of Survey Data“. International Journal of Environmental Research and Public Health 17, Nr. 16 (07.08.2020): 5704. http://dx.doi.org/10.3390/ijerph17165704.
Der volle Inhalt der QuelleRautenbach, Dieter, und Jayme L. Szwarcfiter. „Unit Interval Graphs“. Electronic Notes in Discrete Mathematics 38 (Dezember 2011): 737–42. http://dx.doi.org/10.1016/j.endm.2011.10.023.
Der volle Inhalt der QuelleDourado, Mitre C., Van Bang Le, Fábio Protti, Dieter Rautenbach und Jayme L. Szwarcfiter. „Mixed unit interval graphs“. Discrete Mathematics 312, Nr. 22 (November 2012): 3357–63. http://dx.doi.org/10.1016/j.disc.2012.07.037.
Der volle Inhalt der QuelleGrippo, Luciano N. „Characterizing interval graphs which are probe unit interval graphs“. Discrete Applied Mathematics 262 (Juni 2019): 83–95. http://dx.doi.org/10.1016/j.dam.2019.02.022.
Der volle Inhalt der QuelleKulik, Anatoliy, Sergey Pasichnik und Dmytro Sokol. „MODELING OF PHYSICAL PROCESSES OF ENERGY CONVERSION IN SMALL-SIZED VORTEX ENERGY SEPARATORS“. Aerospace technic and technology, Nr. 1 (26.02.2021): 20–30. http://dx.doi.org/10.32620/aktt.2021.1.03.
Der volle Inhalt der QuelleLe, Van Bang, und Dieter Rautenbach. „Integral mixed unit interval graphs“. Discrete Applied Mathematics 161, Nr. 7-8 (Mai 2013): 1028–36. http://dx.doi.org/10.1016/j.dam.2012.09.013.
Der volle Inhalt der QuelleJinjiang, Yuan, und Zhou Sanming. „Optimal labelling of unit interval graphs“. Applied Mathematics 10, Nr. 3 (September 1995): 337–44. http://dx.doi.org/10.1007/bf02662875.
Der volle Inhalt der QuelleMarx, Dániel. „Precoloring extension on unit interval graphs“. Discrete Applied Mathematics 154, Nr. 6 (April 2006): 995–1002. http://dx.doi.org/10.1016/j.dam.2005.10.008.
Der volle Inhalt der QuelleLin, Min Chih, Francisco J. Soulignac und Jayme L. Szwarcfiter. „Short Models for Unit Interval Graphs“. Electronic Notes in Discrete Mathematics 35 (Dezember 2009): 247–55. http://dx.doi.org/10.1016/j.endm.2009.11.041.
Der volle Inhalt der QuelleDissertationen zum Thema "Unit multiple interval graphs"
Ardevol, martinez Virginia. „Structural and algorithmic aspects of (multiple) interval graphs“. Electronic Thesis or Diss., Université Paris sciences et lettres, 2024. http://www.theses.fr/2024UPSLD028.
Der volle Inhalt der QuelleMultiple interval graphs are a well-known generalization of interval graphs, where each vertex of a graph is represented by a d-interval (the union of d intervals) for some natural number d > 1, and there exists an edge between two vertices if and only if their corresponding d-intervals intersect. In particular, a d-interval graph is unit if all the intervals on the representation have unit length. In this thesis, we study unit d-interval graphs from a structural and an algorithmic perspective. In the first part, we tryto generalize Roberts characterization of unit interval graphs, which states that a graph is unit interval if and only if it is interval and it does not contain the complete bipartite graph K1,3 as an induced subgraph. Then, we move on to studythe complexity of recognizing unit multiple interval graphs. We prove that given a graph G it is NP-hard to determine whether G is a unit d-interval graph, and then extend this hardness result to other subclasses of unit d-interval graphs. Inthe last part of this manuscript, we focus on the PIG-completion problem, where given an interval graph G, we are asked to find the minimum number of edges that we need to add to G so that it becomes a proper interval graph. We obtain apolynomial algorithm when G contains a vertex that is adjacent to every other vertex of the graph, and an XP algorithm parameterized by a structural property of the graph
Vestin, Albin, und Gustav Strandberg. „Evaluation of Target Tracking Using Multiple Sensors and Non-Causal Algorithms“. Thesis, Linköpings universitet, Reglerteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-160020.
Der volle Inhalt der QuelleTu, Yuan-Lung, und 塗元龍. „A Study on Unit Interval Graphs“. Thesis, 2007. http://ndltd.ncl.edu.tw/handle/76002582966141739137.
Der volle Inhalt der Quelle輔仁大學
數學系碩士班
101
The purpose of this thesis is to study some characterizations of unit interval graphs and an algorithm that are used to recognize whethere a given graph is a unit interval graph or not. The former is based on the book ”Introduction to graph theory” written by D. B. West; and the latter is based on the paper ”A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs” by D. G. Corneil.
Williams, Aaron Michael. „Shift gray codes“. Thesis, 2009. http://hdl.handle.net/1828/1966.
Der volle Inhalt der QuelleBücher zum Thema "Unit multiple interval graphs"
Wijdicks, Eelco F. M., und Sarah L. Clark. Neurocritical Care Pharmacotherapy. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190684747.001.0001.
Der volle Inhalt der QuelleBuchteile zum Thema "Unit multiple interval graphs"
Le, Van Bang, und Dieter Rautenbach. „Integral Mixed Unit Interval Graphs“. In Lecture Notes in Computer Science, 495–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-32241-9_42.
Der volle Inhalt der QuelleJoos, Felix. „A Characterization of Mixed Unit Interval Graphs“. In Graph-Theoretic Concepts in Computer Science, 324–35. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-12340-0_27.
Der volle Inhalt der QuelleJiang, Minghui, und Yong Zhang. „Parameterized Complexity in Multiple-Interval Graphs: Domination“. In Parameterized and Exact Computation, 27–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28050-4_3.
Der volle Inhalt der QuelleTalon, Alexandre, und Jan Kratochvil. „Completion of the Mixed Unit Interval Graphs Hierarchy“. In Lecture Notes in Computer Science, 284–96. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17142-5_25.
Der volle Inhalt der QuelleAlam, M. J., S. G. Kobourov, S. Pupyrev und J. Toeniskoetter. „Weak Unit Disk and Interval Representation of Graphs“. In Graph-Theoretic Concepts in Computer Science, 237–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-53174-7_17.
Der volle Inhalt der QuelleCao, Yixin. „Recognizing (Unit) Interval Graphs by Zigzag Graph Searches“. In Symposium on Simplicity in Algorithms (SOSA), 92–106. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2021. http://dx.doi.org/10.1137/1.9781611976496.11.
Der volle Inhalt der QuelleKlavík, Pavel, Jan Kratochvíl, Yota Otachi, Ignaz Rutter, Toshiki Saitoh, Maria Saumell und Tomáš Vyskočil. „Extending Partial Representations of Proper and Unit Interval Graphs“. In Algorithm Theory – SWAT 2014, 253–64. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08404-6_22.
Der volle Inhalt der QuelleJiang, Minghui, und Yong Zhang. „Parameterized Complexity in Multiple-Interval Graphs: Partition, Separation, Irredundancy“. In Lecture Notes in Computer Science, 62–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22685-4_6.
Der volle Inhalt der QuelleFrancis, Mathew C., Daniel Gonçalves und Pascal Ochem. „The Maximum Clique Problem in Multiple Interval Graphs (Extended Abstract)“. In Graph-Theoretic Concepts in Computer Science, 57–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-34611-8_9.
Der volle Inhalt der QuelleZhou, Yunhong. „Improved Multi-unit Auction Clearing Algorithms with Interval (Multiple-Choice) Knapsack Problems“. In Algorithms and Computation, 494–506. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11940128_50.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Unit multiple interval graphs"
Sampaio Jr., Moysés S., Fabiano S. Oliveira und Jayme L. Szwarcfiter. „Sobre Finura Própria de Grafos“. In III Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2018. http://dx.doi.org/10.5753/etc.2018.3165.
Der volle Inhalt der QuelleEisenstat, David, und Philip N. Klein. „Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs“. In the 45th annual ACM symposium. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2488608.2488702.
Der volle Inhalt der QuelleSun, M., Z. X. Yang, N. Guo und R. J. Jardine. „Three-Dimensional DEM Simulation of Plugging Behaviour of Small-Diameter Open-Ended Model Piles Penetrating Into Sand“. In Innovative Geotechnologies for Energy Transition. Society for Underwater Technology, 2023. http://dx.doi.org/10.3723/joia5398.
Der volle Inhalt der QuelleCampanari, Stefano, Luca Boncompagni und Ennio Macchi. „Microturbines and Trigeneration: Optimization Strategies and Multiple Engine Configuration Effects“. In ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30417.
Der volle Inhalt der QuellePatrão, Caroline, Luis Kowada, Diane Castonguay, André Ribeiro und Celina Figueiredo. „Some exact values for the diameter in Cayley graph Hl,p“. In IV Encontro de Teoria da Computação. Sociedade Brasileira de Computação - SBC, 2019. http://dx.doi.org/10.5753/etc.2019.6395.
Der volle Inhalt der QuelleMellal, I., V. Rasouli, A. Dehdouh, A. Letrache, C. Abdelhamid, M. L. Malki und O. Bakelli. „Formation Evaluation Challenges of Tight and Shale Reservoirs. A Case Study of the Bakken Petroleum System“. In 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0894.
Der volle Inhalt der QuelleZeng, Qingna, Donghui Wang, Fenggang Zang, Yixiong Zhang, Bihao Wang und Zhihao Yuan. „Disorders in Fluid Filled Pipeline Structure With Elastic Helmholtz Resonators“. In 2022 29th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/icone29-93421.
Der volle Inhalt der QuelleBartkowiak, Tomasz. „Characterization of 3D Surface Texture Directionality Using Multi-Scale Curvature Tensor Analysis“. In ASME 2017 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/imece2017-71609.
Der volle Inhalt der QuelleEnikov, Eniko T., Péter P. Polyvás, Gholam Peyman und Sean Mccafferty. „Tactile Eye Pressure Measurement Through the Eyelid“. In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-50875.
Der volle Inhalt der QuelleMatzenauer, Mônica, Renata Reiser und Helida Santos. „An approach for consensual analysis on Typical Hesitant Fuzzy Sets via extended aggregations and fuzzy implications based on admissible orders“. In Workshop-Escola de Informática Teórica. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/weit.2021.18937.
Der volle Inhalt der Quelle