Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Uniformly accurate numerical methods“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Uniformly accurate numerical methods" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Uniformly accurate numerical methods"
Chartier, Philippe, Loïc Le Treust und Florian Méhats. „Uniformly accurate time-splitting methods for the semiclassical linear Schrödinger equation“. ESAIM: Mathematical Modelling and Numerical Analysis 53, Nr. 2 (März 2019): 443–73. http://dx.doi.org/10.1051/m2an/2018060.
Der volle Inhalt der QuelleShishkin, G. I. „ROBUST NOVEL HIGH-ORDER ACCURATE NUMERICAL METHODS FOR SINGULARLY PERTURBED CONVECTION‐DIFFUSION PROBLEMS“. Mathematical Modelling and Analysis 10, Nr. 4 (31.12.2005): 393–412. http://dx.doi.org/10.3846/13926292.2005.9637296.
Der volle Inhalt der QuelleSu, Chunmei, und Xiaofei Zhao. „On time-splitting methods for nonlinear Schrödinger equation with highly oscillatory potential“. ESAIM: Mathematical Modelling and Numerical Analysis 54, Nr. 5 (26.06.2020): 1491–508. http://dx.doi.org/10.1051/m2an/2020006.
Der volle Inhalt der QuelleDEBELA, HABTAMU GAROMA, und GEMECHIS FILE DURESSA. „Fitted Operator Finite Difference Method for Singularly Perturbed Differential Equations with Integral Boundary Condition“. Kragujevac Journal of Mathematics 47, Nr. 4 (2003): 637–51. http://dx.doi.org/10.46793/kgjmat2304.637d.
Der volle Inhalt der QuelleDebela, Habtamu Garoma, und Gemechis File Duressa. „Uniformly Convergent Nonpolynomial Spline Method for Singularly Perturbed Robin-Type Boundary Value Problems with Discontinuous Source Term“. Abstract and Applied Analysis 2021 (22.10.2021): 1–12. http://dx.doi.org/10.1155/2021/7569209.
Der volle Inhalt der QuelleCai, Yongyong, und Yan Wang. „A uniformly accurate (UA) multiscale time integrator pseudospectral method for the nonlinear Dirac equation in the nonrelativistic limit regime“. ESAIM: Mathematical Modelling and Numerical Analysis 52, Nr. 2 (März 2018): 543–66. http://dx.doi.org/10.1051/m2an/2018015.
Der volle Inhalt der QuelleYoon, Daegeun, und Donghyun You. „An adaptive memory method for accurate and efficient computation of the Caputo fractional derivative“. Fractional Calculus and Applied Analysis 24, Nr. 5 (01.10.2021): 1356–79. http://dx.doi.org/10.1515/fca-2021-0058.
Der volle Inhalt der QuelleA.B., Kerimov,. „Accuracy comparison of signal recognition methods on the example of a family of successively horizontally displaced curves“. Informatics and Control Problems, Nr. 2(6) (18.11.2022): 80–91. http://dx.doi.org/10.54381/icp.2022.2.10.
Der volle Inhalt der QuelleXu, Jian-Zhong, und Wen-Sheng Yu. „On the Slightly Reduced Navier-Stokes Equations“. Journal of Fluids Engineering 119, Nr. 1 (01.03.1997): 90–95. http://dx.doi.org/10.1115/1.2819124.
Der volle Inhalt der QuelleHan, Houde, Min Tang und Wenjun Ying. „Two Uniform Tailored Finite Point Schemes for the Two Dimensional Discrete Ordinates Transport Equations with Boundary and Interface Layers“. Communications in Computational Physics 15, Nr. 3 (März 2014): 797–826. http://dx.doi.org/10.4208/cicp.130413.010813a.
Der volle Inhalt der QuelleDissertationen zum Thema "Uniformly accurate numerical methods"
Bouchereau, Maxime. „Modélisation de phénomènes hautement oscillants par réseaux de neurones“. Electronic Thesis or Diss., Université de Rennes (2023-....), 2024. http://www.theses.fr/2024URENS034.
Der volle Inhalt der QuelleThis thesis focuses on the application of Machine Learning to the study of highly oscillatory differential equations. More precisely, we are interested in an approach to accurately approximate the solution of a differential equation with the least amount of computations, using neural networks. First, the autonomous case is studied, where the proper- ties of backward analysis and neural networks are used to enhance existing numerical methods. Then, a generalization to the strongly oscillating case is proposed to improve a specific first-order numerical scheme tailored to this scenario. Subsequently, neural networks are employed to replace the necessary pre- computations for implementing uniformly ac- curate numerical methods to approximate so- lutions of strongly oscillating equations. This can be done either by building upon the work done for the autonomous case or by using a neural network structure that directly incorporates the equation’s structure
Baumstark, Simon [Verfasser]. „Uniformly Accurate Methods for Klein-Gordon type Equations / Simon Baumstark“. Karlsruhe : KIT-Bibliothek, 2018. http://d-nb.info/1171315880/34.
Der volle Inhalt der QuelleStewart, Dawn L. „Numerical Methods for Accurate Computation of Design Sensitivities“. Diss., Virginia Tech, 1998. http://hdl.handle.net/10919/30561.
Der volle Inhalt der QuellePh. D.
Pasdunkorale, Arachchige Jayantha. „Accurate finite volume methods for the numerical simulation of transport in highly anistropic media“. Thesis, Queensland University of Technology, 2003.
Den vollen Inhalt der Quelle findenHübner, Thomas [Verfasser]. „A monolithic, off-lattice approach to the discrete Boltzmann equation with fast and accurate numerical methods / Thomas Hübner“. Dortmund : Universitätsbibliothek Technische Universität Dortmund, 2011. http://d-nb.info/1011570777/34.
Der volle Inhalt der QuelleZhao, Wei [Verfasser], Martin [Akademischer Betreuer] Stoll, Martin [Gutachter] Stoll und Benny Y. C. [Akademischer Betreuer] Hon. „Accurate and efficient numerical methods for nonlocal problems / Wei Zhao ; Gutachter: Martin Stoll ; Martin Stoll, Benny Y.C. Hon“. Chemnitz : Technische Universität Chemnitz, 2019. http://d-nb.info/1215909780/34.
Der volle Inhalt der QuelleSharify, Meisam. „Scaling Algorithms and Tropical Methods in Numerical Matrix Analysis : Application to the Optimal Assignment Problem and to the Accurate Computation of Eigenvalues“. Palaiseau, Ecole polytechnique, 2011. http://pastel.archives-ouvertes.fr/docs/00/64/38/36/PDF/thesis.pdf.
Der volle Inhalt der QuelleTropical algebra, which can be considered as a relatively new field in Mathematics, emerged in several branches of science such as optimization, synchronization of production and transportation, discrete event systems, optimal control, operations research, etc. The first part of this manuscript is devoted to the study of the numerical applications of tropical algebra. We start by considering the classical problem of estimating the roots of a univariate complex polynomial. We prove several new bounds for the modulus of the roots of a polynomial exploiting tropical methods. These results are specially useful when considering polynomials whose coefficients have different orders of magnitude. We next consider the problem of computing the eigenvalues of a matrix polynomial. Here, we introduce a general scaling technique, based on tropical algebra, which applies in particular to the companion form. This scaling is based on the construction of an auxiliary tropical polynomial function, depending only on the norms of the matrices. The roots (non-differentiability points) of this tropical polynomial provide a priori estimates of the modulus of the eigenvalues. This is justified in particular by a new location result, showing that under assumption involving condition numbers, there is one group of large eigenvalues, which have a maximal order of magnitude, given by the largest root of the auxiliary tropical polynomial. A similar result holds for a group of small eigenvalues. We show experimentally that this scaling improves the backward stability of the computations, particularly in situations when the data have various orders of magnitude. We also study the problem of computing the tropical eigenvalues (non-differentiability points of the characteristic polynomial) of a tropical matrix polynomial. From the combinatorial perspective, this problem can be interpreted as finding the maximum weighted matching function in a bipartite graph whose arcs are valued by convex piecewise linear functions. We developed an algorithm which computes the tropical eigenvalues in polynomial time. In the second part of this thesis, we consider the problem of solving very large instances of the optimal assignment problems (so that standard sequential algorithms cannot be used). We propose a new approach exploiting the connection between the optimal assignment problem and the entropy maximization problem. This approach leads to a preprocessing algorithm for the optimal assignment problem which is based on an iterative method that eliminates the entries not belonging to an optimal assignment. We consider two variants of the preprocessing algorithm, one by using the Sinkhorn iteration and the other by using Newton iteration. This preprocessing algorithm can reduce the initial problem to a much smaller problem in terms of memory requirements. We also introduce a new iterative method based on a modification of the Sinkhorn scaling algorithm, in which a deformation parameter is slowly increased We prove that this iterative method, referred to as the deformed-Sinkhorn iteration, converges to a matrix whose nonzero entries are exactly those belonging to the optimal permutations. An estimation of the rate of convergence is also presented
Zhao, Wei. „Accurate and efficient numerical methods for nonlocal problems“. 2018. https://monarch.qucosa.de/id/qucosa%3A33818.
Der volle Inhalt der Quelle(8718126), Duo Cao. „Efficient and accurate numerical methods for two classes of PDEs with applications to quasicrystals“. Thesis, 2020.
Den vollen Inhalt der Quelle findenIn second part, we propose a method suitable for the computation of quasiperiodic interface, and apply it to simulate the interface between ordered phases in Lifschitz-Petrich model, which can be quasiperiodic. The function space, initial and boundary conditions are carefully chosen such that it fix the relative orientation and displacement, and we follow a gradient flow to let the interface and its optimal structure. The gradient flow is discretized by the scalar auxiliary variable (SAV) approach in time, and spectral method in space using quasiperiodic Fourier series and generalized Jacobi
polynomials. We use the method to study interface between striped, hexagonal and dodecagonal phases, especially when the interface is quasiperiodic. The numerical examples show that our method is efficient and accurate to successfully capture the interfacial structure.
Jaisankar, S. „Accurate Computational Algorithms For Hyperbolic Conservation Laws“. Thesis, 2008. https://etd.iisc.ac.in/handle/2005/905.
Der volle Inhalt der QuelleBücher zum Thema "Uniformly accurate numerical methods"
Li, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43432-1.
Der volle Inhalt der QuelleLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer Berlin / Heidelberg, 2014.
Den vollen Inhalt der Quelle findenLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer, 2016.
Den vollen Inhalt der Quelle findenLi, Wanai. Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids. Springer London, Limited, 2014.
Den vollen Inhalt der Quelle findenFontanarosa, Phil B., und Stacy Christiansen. Units of Measure. Oxford University Press, 2009. http://dx.doi.org/10.1093/jama/9780195176339.003.0018.
Der volle Inhalt der QuelleCoolen, A. C. C., A. Annibale und E. S. Roberts. Graphs with hard constraints: further applications and extensions. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198709893.003.0007.
Der volle Inhalt der QuelleКоллектив, авторов. Труды Физико-технологического института. T. 29: Квантовые компьютеры, микро- и наноэлектроника: физика, технология, диагностика и моделирование. ФГУП «Издательство «Наука», 2020. http://dx.doi.org/10.7868/9785020408081.
Der volle Inhalt der QuelleBuchteile zum Thema "Uniformly accurate numerical methods"
Brayanov, Iliya, und Ivanka Dimitrova. „Uniformly Convergent High-Order Schemes for a 2D Elliptic Reaction-Diffusion Problem with Anisotropic Coefficients“. In Numerical Methods and Applications, 395–402. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/3-540-36487-0_44.
Der volle Inhalt der QuelleHafeez, Muhammad Ali, Tetsunori Inoue, Hiroki Matsumoto, Tomoyuki Sato und Yoshitaka Matsuzaki. „Application of Building Cube Method to Reproduce High-Resolution Hydrodynamics of a Dredged Borrow Pit in Osaka Bay, Japan“. In Lecture Notes in Civil Engineering, 289–98. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-99-7409-2_26.
Der volle Inhalt der QuelleFilbet, Francis, und Giovanni Russo. „Accurate numerical methods for the Boltzmann equation“. In Modeling and Computational Methods for Kinetic Equations, 117–45. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-0-8176-8200-2_4.
Der volle Inhalt der QuelleRoos, H. G., D. Adam und A. Felgenhauer. „A Nonconforming Uniformly Convergent Finite Element Method in Two Dimensions“. In Numerical methods for the Navier-Stokes equations, 217–27. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_22.
Der volle Inhalt der QuelleBradji, Abdallah. „A Second Order Time Accurate SUSHI Method for the Time-Fractional Diffusion Equation“. In Numerical Methods and Applications, 197–206. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-10692-8_22.
Der volle Inhalt der Quellevan Buuren, R., J. G. M. Kuerten, B. J. Geurts und P. J. Zandbergen. „Time accurate simulations of supersonic unsteady flow“. In Sixteenth International Conference on Numerical Methods in Fluid Dynamics, 326–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0106603.
Der volle Inhalt der QuelleKoren, B., und H. T. M. van der Maarel. „Monotone, higher-order accurate, multi-dimensional upwinding“. In Thirteenth International Conference on Numerical Methods in Fluid Dynamics, 110–14. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/3-540-56394-6_198.
Der volle Inhalt der QuelleOsher, Stanley, und Chi-Wang Shu. „High Order Accurate Modern Numerical Methods Applicable to Stellar Pulsations“. In The Numerical Modelling of Nonlinear Stellar Pulsations, 263–67. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0519-1_15.
Der volle Inhalt der QuelleSchöll, E., und H. H. Frühauf. „An Accurate and Efficient Implicit Upwind Solver for the Navier-Stokes Equations“. In Numerical methods for the Navier-Stokes equations, 259–67. Wiesbaden: Vieweg+Teubner Verlag, 1994. http://dx.doi.org/10.1007/978-3-663-14007-8_26.
Der volle Inhalt der QuelleCatalano, L. A., P. De Palma, G. Pascazio und M. Napolitano. „Matrix fluctuation splitting schemes for accurate solutions to transonic flows“. In Fifteenth International Conference on Numerical Methods in Fluid Dynamics, 328–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/bfb0107123.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Uniformly accurate numerical methods"
Xu, X. Y., T. Ma, M. Zeng und Q. W. Wang. „Numerical Study of the Effects of Different Buoyancy Models on Supercritical Flow and Heat Transfer“. In ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17295.
Der volle Inhalt der QuelleKoo, P. C., F. H. Schlereth, R. L. Barbour und H. L. Graber. „Efficient Numerical Method for Quantifying Photon Distributions in the Interior of Thick Scattering Media“. In Advances in Optical Imaging and Photon Migration. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/aoipm.1994.ncpdir.187.
Der volle Inhalt der QuelleYang, R. J., L. Gu, L. Liaw, C. Gearhart, C. H. Tho, X. Liu und B. P. Wang. „Approximations for Safety Optimization of Large Systems“. In ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/dac-14245.
Der volle Inhalt der QuelleKalis, Harijs, Ilmars Kangro und Aivars Aboltins. „Numerical analysis for system of parabolic equations with periodic functions“. In 22nd International Scientific Conference Engineering for Rural Development. Latvia University of Life Sciences and Technologies, Faculty of Engineering, 2023. http://dx.doi.org/10.22616/erdev.2023.22.tf157.
Der volle Inhalt der QuelleThompson, Lonny L., und Yuhuan Tong. „Hybrid Least Squares Finite Element Methods for Reissner-Mindlin Plates“. In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0185.
Der volle Inhalt der QuelleLi, Like, Renwei Mei und James F. Klausner. „Heat Transfer in Thermal Lattice Boltzmann Equation Method“. In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-87990.
Der volle Inhalt der QuelleZhang, J. „A coupled thermo-mechanical and neutron diffusion numerical model for irradiated concrete“. In AIMETA 2022. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902431-4.
Der volle Inhalt der QuelleChen, P. L., S. F. Chang, T. Y. Wu und Y. H. Hung. „A Thermal Network Approach for Predicting Thermal Characteristics of Three-Dimensional Electronic Packages“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13755.
Der volle Inhalt der QuelleKim, C. M., und R. V. Ramaswamy. „Nonuniform Finite-Difference Method for Modeling of Quasi-TM Smal1-Mode-Size Ti:LiNbO3 Channel Waveguides“. In Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.sc4.
Der volle Inhalt der QuelleAndersen, Pål Østebø. „Intercept Method for Accurately Estimating Critical Fluid Saturation and Approximate Transient Solutions with Production Time Scales in Centrifuge Core Plug Experiments“. In SPE EuropEC - Europe Energy Conference featured at the 84th EAGE Annual Conference & Exhibition. SPE, 2023. http://dx.doi.org/10.2118/214402-ms.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Uniformly accurate numerical methods"
Jenkins, Eleanor W. Air/Water Flow in Porous Media: A Comparison of Accurate and Efficient Numerical Methods. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2009. http://dx.doi.org/10.21236/ada518697.
Der volle Inhalt der QuelleCobb, J. W. Third-order-accurate numerical methods for efficient, large time-step solutions of mixed linear and nonlinear problems. Office of Scientific and Technical Information (OSTI), Februar 1995. http://dx.doi.org/10.2172/29360.
Der volle Inhalt der QuelleNobile, F., Q. Ayoul-Guilmard, S. Ganesh, M. Nuñez, A. Kodakkal, C. Soriano und R. Rossi. D6.5 Report on stochastic optimisation for wind engineering. Scipedia, 2022. http://dx.doi.org/10.23967/exaqute.2022.3.04.
Der volle Inhalt der QuelleLi, Honghai, Mitchell Brown, Lihwa Lin, Yan Ding, Tanya Beck, Alejandro Sanchez,, Weiming Wu, Christopher Reed und Alan Zundel. Coastal Modeling System user's manual. Engineer Research and Development Center (U.S.), April 2024. http://dx.doi.org/10.21079/11681/48392.
Der volle Inhalt der QuelleHart, Carl R., D. Keith Wilson, Chris L. Pettit und Edward T. Nykaza. Machine-Learning of Long-Range Sound Propagation Through Simulated Atmospheric Turbulence. U.S. Army Engineer Research and Development Center, Juli 2021. http://dx.doi.org/10.21079/11681/41182.
Der volle Inhalt der QuelleEngel, Bernard, Yael Edan, James Simon, Hanoch Pasternak und Shimon Edelman. Neural Networks for Quality Sorting of Agricultural Produce. United States Department of Agriculture, Juli 1996. http://dx.doi.org/10.32747/1996.7613033.bard.
Der volle Inhalt der QuelleRusso, David, Daniel M. Tartakovsky und Shlomo P. Neuman. Development of Predictive Tools for Contaminant Transport through Variably-Saturated Heterogeneous Composite Porous Formations. United States Department of Agriculture, Dezember 2012. http://dx.doi.org/10.32747/2012.7592658.bard.
Der volle Inhalt der QuelleZhang, Renduo, und David Russo. Scale-dependency and spatial variability of soil hydraulic properties. United States Department of Agriculture, November 2004. http://dx.doi.org/10.32747/2004.7587220.bard.
Der volle Inhalt der QuelleSECOND-ORDER ANALYSIS OF BEAM-COLUMNS BY MACHINE LEARNING-BASED STRUCTURAL ANALYSIS THROUGH PHYSICS-INFORMED NEURAL NETWORKS. The Hong Kong Institute of Steel Construction, Dezember 2023. http://dx.doi.org/10.18057/ijasc.2023.19.4.10.
Der volle Inhalt der Quelle