Zeitschriftenartikel zum Thema „Ungauged rivers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ungauged rivers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Agrawal, Niraj Kumar, Anil Kumar Lohani und N. K. Goel. „Physiographic Analysis of Tehri Dam Catchment and Development of GIUH Based Nash Model for Ungauged Rivers“. Current World Environment 14, Nr. 2 (24.06.2019): 215–30. http://dx.doi.org/10.12944/cwe.14.2.06.
Der volle Inhalt der QuelleBonasia, Rosanna, und Mackendy Ceragene. „Hydraulic Numerical Simulations of La Sabana River Floodplain, Mexico, as a Tool for a Flood Terrain Response Analysis“. Water 13, Nr. 24 (09.12.2021): 3516. http://dx.doi.org/10.3390/w13243516.
Der volle Inhalt der QuelleLou, Hezhen, Pengfei Wang, Shengtian Yang, Fanghua Hao, Xiaoyu Ren, Yue Wang, Liuhua Shi, Juan Wang und Tongliang Gong. „Combining and Comparing an Unmanned Aerial Vehicle and Multiple Remote Sensing Satellites to Calculate Long-Term River Discharge in an Ungauged Water Source Region on the Tibetan Plateau“. Remote Sensing 12, Nr. 13 (06.07.2020): 2155. http://dx.doi.org/10.3390/rs12132155.
Der volle Inhalt der QuelleHou, Jiawei, Albert I. J. M. van Dijk, Luigi J. Renzullo und Robert A. Vertessy. „Using modelled discharge to develop satellite-based river gauging: a case study for the Amazon Basin“. Hydrology and Earth System Sciences 22, Nr. 12 (11.12.2018): 6435–48. http://dx.doi.org/10.5194/hess-22-6435-2018.
Der volle Inhalt der QuelleYang, Shengtian, Chaojun Li, Hezhen Lou, Pengfei Wang, Juan Wang und Xiaoyu Ren. „Performance of an Unmanned Aerial Vehicle (UAV) in Calculating the Flood Peak Discharge of Ephemeral Rivers Combined with the Incipient Motion of Moving Stones in Arid Ungauged Regions“. Remote Sensing 12, Nr. 10 (18.05.2020): 1610. http://dx.doi.org/10.3390/rs12101610.
Der volle Inhalt der QuelleYang, Shengtian, Juan Wang, Pengfei Wang, Tongliang Gong und Huiping Liu. „Low Altitude Unmanned Aerial Vehicles (UAVs) and Satellite Remote Sensing Are Used to Calculated River Discharge Attenuation Coefficients of Ungauged Catchments in Arid Desert“. Water 11, Nr. 12 (13.12.2019): 2633. http://dx.doi.org/10.3390/w11122633.
Der volle Inhalt der QuelleBasnet, Keshav, Deepak Acharya, Krishna Prasad Bhandari, Suraj Lamichhane und Biwas Babu Sadadev. „Floodplain mapping of an ungauged river: A case study on Seti River in Pokhara, Nepal“. Himalayan Journal of Applied Science and Engineering 4, Nr. 2 (25.01.2024): 23–39. http://dx.doi.org/10.3126/hijase.v4i2.62185.
Der volle Inhalt der QuelleGorbachova, Liudmyla, und Borys Khrystyuk. „Calculation Approaches of the Probable Maximum Discharge of Spring Flood at Ungauged Sites in the Southern Buh River Basin, Ukraine“. Annals of Valahia University of Targoviste, Geographical Series 18, Nr. 2 (01.10.2018): 107–20. http://dx.doi.org/10.2478/avutgs-2018-0012.
Der volle Inhalt der QuelleArchfield, S. A., P. A. Steeves, J. D. Guthrie und K. G. Ries III. „A web-based software tool to estimate unregulated daily streamflow at ungauged rivers“. Geoscientific Model Development Discussions 5, Nr. 3 (31.08.2012): 2503–26. http://dx.doi.org/10.5194/gmdd-5-2503-2012.
Der volle Inhalt der QuelleNigussie, Getenet, Mamaru A. Moges, Michael M. Moges und Tammo S. Steenhuis. „Assessment of Suitable Land for Surface Irrigation in Ungauged Catchments: Blue Nile Basin, Ethiopia“. Water 11, Nr. 7 (15.07.2019): 1465. http://dx.doi.org/10.3390/w11071465.
Der volle Inhalt der QuelleAga, Alemu, Assefa Melesse und Bayou Chane. „Estimating the Sediment Flux and Budget for a Data Limited Rift Valley Lake in Ethiopia“. Hydrology 6, Nr. 1 (23.12.2018): 1. http://dx.doi.org/10.3390/hydrology6010001.
Der volle Inhalt der QuelleP. C., Shakti, Tsuyoshi Nakatani und Ryohei Misumi. „Analysis of Flood Inundation in Ungauged Mountainous River Basins: A Case Study of an Extreme Rain Event on 5–6 July 2017 in Northern Kyushu, Japan“. Journal of Disaster Research 13, Nr. 5 (01.10.2018): 860–72. http://dx.doi.org/10.20965/jdr.2018.p0860.
Der volle Inhalt der QuelleKhasmakhi, Hadis Pakdel, Majid Vazifedoust, Safar Marofi und Abdollah Taheri Tizro. „Simulation of river discharge in ungauged catchments by forcing GLDAS products to a hydrological model (a case study: Polroud basin, Iran)“. Water Supply 20, Nr. 1 (05.11.2019): 277–86. http://dx.doi.org/10.2166/ws.2019.160.
Der volle Inhalt der QuelleBiondi, Filippo, Angelica Tarpanelli, Pia Addabbo, Carmine Clemente und Danilo Orlando. „Pixel Tracking to Estimate Rivers Water Flow Elevation Using Cosmo-SkyMed Synthetic Aperture Radar Data“. Remote Sensing 11, Nr. 21 (02.11.2019): 2574. http://dx.doi.org/10.3390/rs11212574.
Der volle Inhalt der QuelleArchfield, S. A., P. A. Steeves, J. D. Guthrie und K. G. Ries III. „Towards a publicly available, map-based regional software tool to estimate unregulated daily streamflow at ungauged rivers“. Geoscientific Model Development 6, Nr. 1 (28.01.2013): 101–15. http://dx.doi.org/10.5194/gmd-6-101-2013.
Der volle Inhalt der QuelleCostelloe, J. F., J. T. Puckridge, J. R. W. Reid, J. Pritchard, P. Hudson, V. Bailey und M. Good. „Environmental flow requirements in arid zone rivers – a case study from the Lake Eyre Basin, central Australia“. Water Science and Technology 48, Nr. 7 (01.10.2003): 65–72. http://dx.doi.org/10.2166/wst.2003.0425.
Der volle Inhalt der QuelleYusuf, Abdulganiyu, Romoke Ojo, Mohammed O. Idrees, Abdul-Lateef Balogun, Isa B. Salami und Ojogbane S. Sani. „Modelling flood hazards impacted by ungauged river in urbanised area using HEC-RAS and GIS“. Nigerian Journal of Technological Development 20, Nr. 2 (10.10.2023): 83–92. http://dx.doi.org/10.4314/njtd.v20i2.1405.
Der volle Inhalt der QuelleJakimavičius, Darius, Gintaras Adžgauskas, Diana Šarauskienė und Jūratė Kriaučiūnienė. „Climate Change Impact on Hydropower Resources in Gauged and Ungauged Lithuanian River Catchments“. Water 12, Nr. 11 (21.11.2020): 3265. http://dx.doi.org/10.3390/w12113265.
Der volle Inhalt der QuelleZhou, Mingtong, Yuchuan Guo, Ning Wang, Xuan Wei, Yunbao Bai und Huijing Wang. „Low-Altitude Remote Sensing Inversion of River Flow in Ungauged Basins“. Sustainability 14, Nr. 19 (07.10.2022): 12792. http://dx.doi.org/10.3390/su141912792.
Der volle Inhalt der QuelleKebede, Mulugeta Genanu, Lei Wang, Kun Yang, Deliang Chen, Xiuping Li, Tian Zeng und Zhidan Hu. „Discharge Estimates for Ungauged Rivers Flowing over Complex High-Mountainous Regions based Solely on Remote Sensing-Derived Datasets“. Remote Sensing 12, Nr. 7 (26.03.2020): 1064. http://dx.doi.org/10.3390/rs12071064.
Der volle Inhalt der QuelleGutry-Korycka, Małgorzata, Dariusz Woronko und Jarosław Suchożebrski. „Regional Conditions for Maximum Probable Discharge in Poland’s Rivers“. Miscellanea Geographica 14, Nr. 1 (01.12.2010): 145–67. http://dx.doi.org/10.2478/mgrsd-2010-0014.
Der volle Inhalt der QuelleRoy, Suvendu, und Biswaranjan Mistri. „Estimation of Peak Flood Discharge for an Ungauged River: A Case Study of the Kunur River, West Bengal“. Geography Journal 2013 (28.12.2013): 1–11. http://dx.doi.org/10.1155/2013/214140.
Der volle Inhalt der QuelleYu, Zexing, Xiaohong Chen und Jiefeng Wu. „Calibrating a Hydrological Model in an Ungauged Mountain Basin with the Budyko Framework“. Water 14, Nr. 19 (02.10.2022): 3112. http://dx.doi.org/10.3390/w14193112.
Der volle Inhalt der QuelleZlatanović, N., M. Stefanović, M. Milojević und J. Čotrić. „Automated hydrologic analysis of ungauged basins in Serbia using open source software“. Water Practice and Technology 9, Nr. 4 (01.12.2014): 445–49. http://dx.doi.org/10.2166/wpt.2014.047.
Der volle Inhalt der QuellePiotrowski, Adam P., Jaroslaw J. Napiorkowski, Pawel M. Rowinski und Steve G. Wallis. „Evaluation of temporal concentration profiles for ungauged rivers following pollution incidents“. Hydrological Sciences Journal 56, Nr. 5 (Juli 2011): 883–94. http://dx.doi.org/10.1080/02626667.2011.583398.
Der volle Inhalt der QuelleYan, Bao-Wei, Yi-Xuan Zou, Yu Liu, Ran Mu, Hao Wang und Yi-Wei Tang. „Addressing Spatial Heterogeneity in the Discrete Generalized Nash Model for Flood Routing“. Water 13, Nr. 21 (07.11.2021): 3133. http://dx.doi.org/10.3390/w13213133.
Der volle Inhalt der QuelleBurgan, Halil Ibrahim, und Hafzullah Aksoy. „Annual flow duration curve model for ungauged basins“. Hydrology Research 49, Nr. 5 (12.02.2018): 1684–95. http://dx.doi.org/10.2166/nh.2018.109.
Der volle Inhalt der QuelleBurgan, Halil Ibrahim, und Hafzullah Aksoy. „Daily flow duration curve model for ungauged intermittent subbasins of gauged rivers“. Journal of Hydrology 604 (Januar 2022): 127249. http://dx.doi.org/10.1016/j.jhydrol.2021.127249.
Der volle Inhalt der QuellePeñas, Francisco J., Barquín, José und Álvarez, César. „A comparison of modeling techniques to predict hydrological indices in ungauged rivers“. Limnetica, Nr. 37 (29.01.2018): 145–58. http://dx.doi.org/10.23818/limn.37.12.
Der volle Inhalt der QuelleVandaele, Remy, Sarah L. Dance und Varun Ojha. „Deep learning for automated river-level monitoring through river-camera images: an approach based on water segmentation and transfer learning“. Hydrology and Earth System Sciences 25, Nr. 8 (16.08.2021): 4435–53. http://dx.doi.org/10.5194/hess-25-4435-2021.
Der volle Inhalt der QuelleSarhadi, Ali, Saeed Soltani und Reza Modarres. „Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis“. Journal of Hydrology 458-459 (August 2012): 68–86. http://dx.doi.org/10.1016/j.jhydrol.2012.06.039.
Der volle Inhalt der QuelleKareem, Kareem Abd Ali, und Hayder A. K. AL-Thamiry. „Identification of Scouring Zones in Ungauged River by Simulation: The Case of Galal Badrah River, Iraq“. Association of Arab Universities Journal of Engineering Sciences 26, Nr. 3 (31.08.2019): 57–67. http://dx.doi.org/10.33261/jaaru.2019.26.3.007.
Der volle Inhalt der QuelleHasholt, Bent, Nelly Bobrovitskaya, Jim Bogen, James McNamara, Sebastian H. Mernild, David Milburn und Desmond E. Walling. „Sediment transport to the Arctic Ocean and adjoining cold oceans*“. Hydrology Research 37, Nr. 4-5 (01.08.2006): 413–32. http://dx.doi.org/10.2166/nh.2006.023.
Der volle Inhalt der QuelleJia, Yao, Huimin Lei, Hanbo Yang und Qingfang Hu. „Terrestrial Water Storage Change Retrieved by GRACE and Its Implication in the Tibetan Plateau: Estimating Areal Precipitation in Ungauged Region“. Remote Sensing 12, Nr. 19 (24.09.2020): 3129. http://dx.doi.org/10.3390/rs12193129.
Der volle Inhalt der QuelleFerrari, Alessia, Marco D'Oria, Renato Vacondio, Paolo Mignosa und Maria Giovanna Tanda. „Hydrograph estimation at upstream ungauged sections on the Secchia River (Italy) by means of a parallel Bayesian inverse methodology“. E3S Web of Conferences 40 (2018): 06034. http://dx.doi.org/10.1051/e3sconf/20184006034.
Der volle Inhalt der QuelleNag und Biswal. „Can a Calibration-Free Dynamic Rainfall‒Runoff Model Predict FDCs in Data-Scarce Regions? Comparing the IDW Model with the Dynamic Budyko Model in South India“. Hydrology 6, Nr. 2 (22.04.2019): 32. http://dx.doi.org/10.3390/hydrology6020032.
Der volle Inhalt der QuelleEng, K., D. M. Carlisle, D. M. Wolock und J. A. Falcone. „PREDICTING THE LIKELIHOOD OF ALTERED STREAMFLOWS AT UNGAUGED RIVERS ACROSS THE CONTERMINOUS UNITED STATES“. River Research and Applications 29, Nr. 6 (09.03.2012): 781–91. http://dx.doi.org/10.1002/rra.2565.
Der volle Inhalt der QuelleBragg, O. M., A. R. Black, R. W. Duck und J. S. Rowan. „Approaching the physical-biological interface in rivers: a review of methods for ecological evaluation of flow regimes“. Progress in Physical Geography: Earth and Environment 29, Nr. 4 (Dezember 2005): 506–31. http://dx.doi.org/10.1191/0309133305pp460ra.
Der volle Inhalt der QuelleGrandry, M., S. Gailliez, C. Sohier, A. Verstraete und A. Degré. „A method for low flow estimation at ungauged sites, case study in Wallonia (Belgium)“. Hydrology and Earth System Sciences Discussions 9, Nr. 10 (11.10.2012): 11583–614. http://dx.doi.org/10.5194/hessd-9-11583-2012.
Der volle Inhalt der QuellePeña-Arancibia, J. L., A. I. J. M. van Dijk, M. Mulligan und L. A. Bruijnzeel. „The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments“. Hydrology and Earth System Sciences 14, Nr. 11 (04.11.2010): 2193–205. http://dx.doi.org/10.5194/hess-14-2193-2010.
Der volle Inhalt der QuelleRianna, M., F. Russo und F. Napolitano. „Stochastic index model for intermittent regimes: from preliminary analysis to regionalisation“. Natural Hazards and Earth System Sciences 11, Nr. 4 (27.04.2011): 1189–203. http://dx.doi.org/10.5194/nhess-11-1189-2011.
Der volle Inhalt der QuelleZlatanović, Nikola, und Sonja Gavrić. „Comparison of an Automated and Manual Method for Calculating Storm Runoff Response in Ungauged Catchments in Serbia“. Journal of Hydrology and Hydromechanics 61, Nr. 3 (01.09.2013): 195–201. http://dx.doi.org/10.2478/johh-2013-0025.
Der volle Inhalt der QuellePaiva, R. C. D., W. Collischonn, M. P. Bonnet, L. G. G. de Gonçalves, S. Calmant, A. Getirana und J. Santos da Silva. „Assimilating in situ and radar altimetry data into a large-scale hydrologic-hydrodynamic model for streamflow forecast in the Amazon“. Hydrology and Earth System Sciences Discussions 10, Nr. 3 (07.03.2013): 2879–925. http://dx.doi.org/10.5194/hessd-10-2879-2013.
Der volle Inhalt der QuelleAnnis, Antonio, Fernando Nardi, Andrea Petroselli, Ciro Apollonio, Ettore Arcangeletti, Flavia Tauro, Claudio Belli, Roberto Bianconi und Salvatore Grimaldi. „UAV-DEMs for Small-Scale Flood Hazard Mapping“. Water 12, Nr. 6 (16.06.2020): 1717. http://dx.doi.org/10.3390/w12061717.
Der volle Inhalt der QuelleK.C., Prakash, Suresh Baral, Binaya Kumar Mishra und Indra Prasad Timilsina. „Experimental and Numerical Simulations of Sediment in Fusre River Basin, Nepal“. Himalayan Journal of Applied Science and Engineering 3, Nr. 1 (30.06.2022): 39–52. http://dx.doi.org/10.3126/hijase.v3i1.48254.
Der volle Inhalt der QuelleFerrari, Alessia, Marco D'Oria, Renato Vacondio, Alessandro Dal Palù, Paolo Mignosa und Maria Giovanna Tanda. „Discharge hydrograph estimation at upstream-ungauged sections by coupling a Bayesian methodology and a 2-D GPU shallow water model“. Hydrology and Earth System Sciences 22, Nr. 10 (16.10.2018): 5299–316. http://dx.doi.org/10.5194/hess-22-5299-2018.
Der volle Inhalt der QuelleHulley, Mike, Colin Clarke und Ed Watt. „Occurrence and magnitude of low flows for Canadian rivers: an ecozone approach“. Canadian Journal of Civil Engineering 41, Nr. 1 (Januar 2014): 1–8. http://dx.doi.org/10.1139/cjce-2013-0300.
Der volle Inhalt der QuelleGao, Zhen, Guoqiang Tang, Wenlong Jing, Zhiwei Hou, Ji Yang und Jia Sun. „Evaluation of Multiple Satellite, Reanalysis, and Merged Precipitation Products for Hydrological Modeling in the Data-Scarce Tributaries of the Pearl River Basin, China“. Remote Sensing 15, Nr. 22 (13.11.2023): 5349. http://dx.doi.org/10.3390/rs15225349.
Der volle Inhalt der QuelleQuintero, Felipe, Witold F. Krajewski und Marcela Rojas. „A Flood Potential Index for Effective Communication of Streamflow Forecasts at Ungauged Communities“. Journal of Hydrometeorology 21, Nr. 4 (April 2020): 807–14. http://dx.doi.org/10.1175/jhm-d-19-0212.1.
Der volle Inhalt der QuelleBenito, G., B. A. Botero, V. R. Thorndycraft, M. Rico, Y. Sánchez-Moya, A. Sopeña, M. J. Machado und O. Dahan. „Rainfall-runoff modelling and palaeoflood hydrology applied to reconstruct centennial scale records of flooding and aquifer recharge in ungauged ephemeral rivers“. Hydrology and Earth System Sciences Discussions 7, Nr. 6 (21.12.2010): 9631–60. http://dx.doi.org/10.5194/hessd-7-9631-2010.
Der volle Inhalt der Quelle