Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Underwater Experiments“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Underwater Experiments" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Underwater Experiments"
Chepurin, Yu A. „Experiments on underwater acoustic tomography“. Acoustical Physics 53, Nr. 3 (Mai 2007): 393–416. http://dx.doi.org/10.1134/s1063771007030141.
Der volle Inhalt der QuelleZhang, Meiyan, Wenyu Cai, Qinan Xie und Shenyang Xu. „Binocular-Vision-Based Obstacle Avoidance Design and Experiments Verification for Underwater Quadrocopter Vehicle“. Journal of Marine Science and Engineering 10, Nr. 8 (30.07.2022): 1050. http://dx.doi.org/10.3390/jmse10081050.
Der volle Inhalt der QuelleRAO, C. V. K. PRASADA, J. SWAIN, P. V. HAREESH KUMAR, P. V. NAIR, V. N. PANCHALAI und R. K. SHUKLA. „Underwater acoustic propagation experiments during ARMEX“. MAUSAM 56, Nr. 1 (19.01.2022): 281–86. http://dx.doi.org/10.54302/mausam.v56i1.905.
Der volle Inhalt der QuelleHostombe, Kevin, Tom Avsic und Delf Sachau. „Experiments with coated surfaces to generate sound waves in water“. Journal of the Acoustical Society of America 154, Nr. 4_supplement (01.10.2023): A355. http://dx.doi.org/10.1121/10.0023778.
Der volle Inhalt der QuelleZhu, Jifeng, Xiaohe Pan, Zheng Peng, Mengzhuo Liu, Jingqian Guo, Tong Zhang, Yu Gou und Jun-Hong Cui. „A uw-Cellular Network: Design, Implementation and Experiments“. Journal of Marine Science and Engineering 11, Nr. 4 (13.04.2023): 827. http://dx.doi.org/10.3390/jmse11040827.
Der volle Inhalt der QuelleDunbabin, Matthew, Peter Corke, Iuliu Vasilescu und Daniela Rus. „Experiments with Cooperative Control of Underwater Robots“. International Journal of Robotics Research 28, Nr. 6 (20.05.2009): 815–33. http://dx.doi.org/10.1177/0278364908098456.
Der volle Inhalt der QuelleEllison, William T., und Karen S. Weixel. „Considerations for designing underwater acoustical playback experiments“. Journal of the Acoustical Society of America 96, Nr. 5 (November 1994): 3316–17. http://dx.doi.org/10.1121/1.410748.
Der volle Inhalt der QuelleRajendran, R., J. K. Paik und J. M. Lee. „OF UNDERWATER EXPLOSION EXPERIMENTS ON PLANE PLATES“. Experimental Techniques 31, Nr. 1 (Januar 2007): 18–24. http://dx.doi.org/10.1111/j.1747-1567.2006.00130.x.
Der volle Inhalt der QuellePau, Hans Wilhelm, Mareike Warkentin, Olaf Specht, Helga Krentz, Anne Herrmann und Karsten Ehrt. „Experiments on the mechanism of underwater hearing“. Acta Oto-Laryngologica 131, Nr. 12 (05.09.2011): 1279–85. http://dx.doi.org/10.3109/00016489.2011.607845.
Der volle Inhalt der QuelleBuckingham, Michael J. „Light aircraft sound for underwater acoustics experiments“. Journal of the Acoustical Society of America 140, Nr. 4 (Oktober 2016): 3169. http://dx.doi.org/10.1121/1.4969951.
Der volle Inhalt der QuelleDissertationen zum Thema "Underwater Experiments"
Kodati, Parasar. „Biomimetic micro underwater vehicle with ostraciiform locomotion system design, analysis and experiments /“. Access to citation, abstract and download form provided by ProQuest Information and Learning Company; downloadable PDF file, 139 p, 2006. http://proquest.umi.com/pqdweb?did=1203586131&sid=7&Fmt=2&clientId=8331&RQT=309&VName=PQD.
Der volle Inhalt der QuelleFarren, Maureen A. „Some experiments with underwater acoustic returns from cylinders relative to object identification for AUV operation/“. Thesis, Monterey, California. Naval Postgraduate School, 1988. http://hdl.handle.net/10945/23398.
Der volle Inhalt der QuelleUnderwater Vehicles, Sonar Sound Analyzers, Underwater Navigation, Acoustics, Anechoic Chambers, Cylindrical Bodies, Data Storage Systems, Delay, Electroacoustic Transducers, Estimates, Experimental Data, Geometric Forms, Identification, Images, Position Location, Propagation, Sonar, Surface Properties, Target Strength, Theses, Time Intervals, Underwater, Underwater Equipment
Phaneuf, Matthew D. „Experiments with the REMUS AUV“. Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FPhaneuf.pdf.
Der volle Inhalt der QuelleTucker, Simon. „An ecological approach to the classification of transient underwater acoustic events : perceptual experiments and auditory models“. Thesis, University of Sheffield, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401126.
Der volle Inhalt der QuelleConnor, Russya. „The poetics of gravity: Performance experiments from the natural environment to the stage“. Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2014. https://ro.ecu.edu.au/theses/1561.
Der volle Inhalt der QuelleBecker, Kyle M. „Geoacoustic inversion in laterally varying shallow-water experiments using high-resolution wavenumber estimation“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/29056.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 161-170).
Sound propagation in shallow water is highly dependent on the interaction of the sound field with the bottom. In order to fully understand this problem, it is necessary to obtain reliable estimates of bottom geoacoustic properties that can be used in acoustic propagation codes. In this thesis, perturbative inversion methods and exact inverse methods are discussed as a means for inferring geoacoustic properties of the bottom. For each of these methods, the input data to the inversion is the horizontal wavenumber spectrum of a point-source acoustic field. The main thrust of the thesis work concerns extracting horizontal wavenumber content for fully three-dimensionally varying waveguide environments. In this context, a high-resolution autoregressive (AR) spectral estimator was applied to determine wavenumber content for short aperture data. As part of this work, the AR estimator was examined for its ability to detect discrete wavenumbers in the presence of noise and also to resolve closely spaced wavenumbers for short aperture data. As part of a geoacoustic inversion workshop, the estimator was applied to extract horizontal wavenumber content for synthetic pressure field data with range-varying geoacoustic properties in the sediment. The resulting wavenumber content was used as input data to a perturbative inverse algorithm to determine the sound speed profile in the sediment. It was shown using the high-resolution wavenumber estimator that both the shape and location of the range-variability in the sediment could be determined.
(cont.) The estimator was also applied to determine wavenumbers for synthetic data where the water column sound speed contained temporal variations due to the presence of internal waves. It was shown that reliable estimates of horizontal wavenumbers could be obtained that are consistent with the boundary conditions of the waveguide. The Modal Mapping Experiment (MOMAX), an experimental method for measuring the full spatial variability of a propagating sound field and its corresponding modal content in two-dimensions, is also discussed. The AR estimator is applied to extract modal content from the real data and interpreted with respect to source/receiver motion and geometry. For a moving source, it is shown that the wavenumber content is Doppler shifted. A method is then described that allows the direct measure of modal group velocities from Doppler shifted wavenumber spectra. Finally, numerical studies are presented addressing the practical issues associated with using MOMAX type data in the exact inversion method of Gelfand-Levitan.
by Kyle M. Becker.
Ph.D.
Louédec, Morgan. „Guaranteed ellipsoidal numerical method for the stability analysis of the formation control of a group of underwater robots“. Electronic Thesis or Diss., Brest, École nationale supérieure de techniques avancées Bretagne, 2024. http://www.theses.fr/2024ENTA0007.
Der volle Inhalt der QuelleIn the development of human marine activity, groups of underwater robots can automate certain tasks. Since these robots are difficult to localise because of the underwater constrains, they must move in formation to be reliable. While various theoretical controllers have been proposed to challenge these constrains, they still need to consider more complex constrains and to be tested on real systems. As for every autonomous system, the stability of the formation must be verified by a mathematical proof. However, the complexity of these nonlinear systems makes conventional Lyapunov method difficult to use. Thus, this thesis’ main objective is to develop guaranteed numerical methods, based on interval arithmetic, that can assist the stability proof. Based on ellipsoidal guaranteed propagation, a first method is designed for discrete time systems to compute an ellipsoidal domain of attraction. This method is then extended to continuous-time systems and then to synchronous hybrid systems which are more realistic modellings. In addition, the ellipsoidal propagation is extended to consider singular mappings and degenerate ellipsoids. Finally, some real world underwater formation control was achieved to illustrate the stability
Real, Gaultier. „An ultrasonic testbench for reproducing the degradation of sonar performance in fluctuating ocean“. Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4753/document.
Der volle Inhalt der QuelleThe ocean medium is subject to many sources of fluctuations. The most critical ones were found to be internal waves, occurring frequently and inducing fluctuations of the spatial distribution of the sound speed field. Because of the fairly long period of this phenomenon as compared to the propagation time of acoustic waves for sonar applications, the process can be considered frozen in time for each stochastic realization of the medium. The development of testbenches allowing to reproduce the effect of atmospheric turbulence on optic waves propagation under laboratory conditions lead to considerable advancements in the field of adaptive optics. We therefore see a vivid interest in being able to reproduce the effects of internal waves on sound propagation in controlled environments. An experimental protocol in a water tank is proposed: an ultrasonic wave is transmitted through a randomly rough acoustic lens, producing distortions of the received wavefront. The induced signal fluctuations are controlled by tuning the statistical parameters of the roughness of the lens. Especially, they are linked to dimensional parameters allowing to classify the configurations into regimes of fluctuations and to predict the statistical moment of the acoustic pressure up to the fourth order. A remarkable relevance of our experimental scheme is found when compared to theoretical and simulation results. The degradation of classical signal processing techniques when applied to our acquired data highlights the need for corrective detection techniques. A review of the existing techniques in other domains is proposed
Smith, Donald F. „Acoustic modeling of the Monterey Bay tomography experiment“. Thesis, Monterey, California : Naval Postgraduate School, 1990. http://handle.dtic.mil/100.2/ADA242658.
Der volle Inhalt der QuelleThesis Advisor(s): MIller, James H. ; Chiu, Ching-Sang. "December 1990." Description based on title screen as viewed on April 2, 2010. DTIC Identifier(s): Sound transmission, underwater sound, sea water, bathymetry, ray tracing, mathematical models, HARPO computer program, underwater acoustics, wave propagation, Monterey Bay (California), bays, California, shallow water, acoustic tomography, three dimensional, continental shelves, acoustic velocity, theses. Author(s) subject terms: Acoustic tomography, acoustic modeling, eigenrays, Monterey Bay. Includes bibliographical references (p. 57-58). Also available in print.
Morin, Russell Walter. „A Novel Localization System for Experimental Autonomous Underwater Vehicles“. Digital WPI, 2010. https://digitalcommons.wpi.edu/etd-theses/233.
Der volle Inhalt der QuelleBücher zum Thema "Underwater Experiments"
Farren, Maureen A. Some experiments with underwater acoustic returns from cylinders relative to object identification for AUV operation. Monterey, California: Naval Postgraduate School, 1988.
Den vollen Inhalt der Quelle findenBecker, Kyle M. Geoacoustic inversion in laterally varying shallow-water experiments using high-resolution wavenumber estimation. Cambridge, Mass: Massachusetts Institute of Technology, 2002.
Den vollen Inhalt der Quelle findenGreat Britain. Marine Accident Investigation Branch. Report on the underwater survey of the stern trawler Gaul H.243 and the supporting model experiments August 1998-January 1999. Southampton: Marine Accident Investigation Branch, 1999.
Den vollen Inhalt der Quelle findenTolstoy, Ivan. Ocean acoustics: Theory and experiment in underwater sound. New York, N.Y: Published for the Acoustical Society of America by the American Institute of Physics, 1987.
Den vollen Inhalt der Quelle findenHeadrick, Robert Hugh. Analysis of internal wave induced mode coupling effects on the 1995 SWARM experiment acoustic transmissions. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1997.
Den vollen Inhalt der Quelle findenPlueddemann, Albert J. ADCP measurements from the ICESHELF 94 experiment. Woods Hole, Mass: Woods Hole Oceanographic Institution, 1995.
Den vollen Inhalt der Quelle findenA, Caiti, Hrsg. Experimental acoustic inversion methods for exploration of the shallow water environment. Dordrecht: Kluwer Academic, 2000.
Den vollen Inhalt der Quelle findenMeyer, Robert H. Experimental determination of transfer functions for a coated, ring stiffened cylinder as a function of hydrostatic pressure. Springfield, Va: Available from National Technical Information Service, 1997.
Den vollen Inhalt der Quelle findenRussia) U.S.-Russia Workshop on Experimental Underwater Acoustics (1999 Nizhniĭ Novgorod. Proceedings of the U.S.-Russia Workshop on Experimental Underwater Acoustics, November 18-20, 1999. Herausgegeben von Talanov V. I und Institut prikladnoĭ fiziki (Rossiĭskai͡a akademii͡a nauk). Nizhniĭ Novgorod: Russian Academy of Science, Institute of Applied Physics, 2000.
Den vollen Inhalt der Quelle findenHeinemann, Michael Gerhard. Experimental studies of applications of time-reversal acoustics to non-coherent underwater communications. Monterey, Calif: Naval Postgraduate School, 2000.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Underwater Experiments"
Antonelli, Gianluca. „Experiments of Dynamic Control of a 6-DOF AUV“. In Underwater Robots, 117–26. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02877-4_5.
Der volle Inhalt der QuelleMcLain, Timothy W., Stephen M. Rock und Michael J. Lee. „Experiments in the Coordinated Control of an Underwater Arm/Vehicle System“. In Underwater Robots, 139–58. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-1419-6_8.
Der volle Inhalt der QuelleNuske, Stephen, Jonathan Roberts, David Prasser und Gordon Wyeth. „Experiments in Visual Localisation around Underwater Structures“. In Springer Tracts in Advanced Robotics, 295–304. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-13408-1_27.
Der volle Inhalt der QuelleMelville, W. K., M. R. Loewen und Eric Lamarre. „Bubbles, Noise and Breaking Waves: A Review of Laboratory Experiments“. In Natural Physical Sources of Underwater Sound, 483–501. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_36.
Der volle Inhalt der QuelleGoodman, R. R., und P. Krishnan. „A Review of Environmental Measurements Taken during Ambient Noise Experiments“. In Natural Physical Sources of Underwater Sound, 85–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_8.
Der volle Inhalt der QuelleYuan, Xin’an, Wei Li, Jianming Zhao, Xiaokang Yin, Xiao Li und Jianchao Zhao. „High Sensitivity Rotating Alternating Current Field Measurement for Arbitrary-Angle Underwater Cracks“. In Recent Development of Alternating Current Field Measurement Combine with New Technology, 1–20. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-4224-0_1.
Der volle Inhalt der QuelleBerthelot, Yves H., und Ilene J. Busch-Vishniac. „Optical Generation of Sound: Experiments with a Moving Thermoacoustic Source. The Problem of Oblique Incidence of the Laser Beam“. In Progress in Underwater Acoustics, 603–10. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_71.
Der volle Inhalt der QuelleDetweiler, Carrick, Elizabeth Basha, Marek Doniec und Daniela Rus. „Underwater Networks with Limited Mobility: Algorithms, Systems, and Experiments“. In Mobile Ad Hoc Networking, 769–803. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118511305.ch22.
Der volle Inhalt der QuelleZhang, Xin, Zhendong Luan und Zengfeng Du. „In Situ Detection and Seafloor Observation of the Site F Cold Seep“. In South China Sea Seeps, 235–53. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1494-4_14.
Der volle Inhalt der QuelleHundley, Allen, Stewart A. L. Glegg, Juan I. Arvelo und Herbert Uberall. „Numerical Modelling and Laboratory Experiments on Underwater Sound Propagation Over a Shear Supporting Bottom“. In Shear Waves in Marine Sediments, 75–81. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3568-9_9.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Underwater Experiments"
Viegas, Rúben S., Friedrich Zabel, João Gomes und António Silva. „Spiral Beacon Calibration and Experiments for Underwater Localization“. In OCEANS 2024 - SINGAPORE, 1–9. IEEE, 2024. http://dx.doi.org/10.1109/oceans51537.2024.10682258.
Der volle Inhalt der QuelleLi, Guanhui, Fangjiong Chen, Xing Zhang, Hua Yu und Lijun Xu. „Field Experiments of OTFS Based Underwater Acoustic Communication in Shallow Water“. In 2024 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 1–4. IEEE, 2024. https://doi.org/10.1109/icspcc62635.2024.10770503.
Der volle Inhalt der QuelleDu, Hongwei, Xianglong Zhang, Kai Wang, Guanghua Li und Bingju Lu. „Improvements and experiments on defect detection of optical images of underwater structures“. In 2024 5th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), 232–37. IEEE, 2024. http://dx.doi.org/10.1109/icbase63199.2024.10762478.
Der volle Inhalt der QuelleShan, Mingguang, Bei Hu, Zhi Zhong, Lei Liu, Yongqiang Xie und Zhongbo Li. „Global estimation of underwater polarization imaging using image correlation“. In Digital Holography and Three-Dimensional Imaging, W4A.32. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w4a.32.
Der volle Inhalt der QuelleCosimo, Davide, Antonio Montanari, Daniele Sebino Terracciano, Lorenzo Bazzarello, Riccardo Costanzi, Filippo Campagnaro und Michele Zorzi. „Comparative Analysis of Throughput Maximization Strategies in Underwater Acoustic Networks: Results from At-Sea Experiments“. In 2024 IEEE International Workshop on Metrology for the Sea; Learning to Measure Sea Health Parameters (MetroSea), 52–57. IEEE, 2024. https://doi.org/10.1109/metrosea62823.2024.10765664.
Der volle Inhalt der QuelleLin, Xichuan, Shuxiang Guo, Koujirou Tanaka und Seji Hata. „Underwater experiments of a water-jet-based spherical underwater robot“. In 2011 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2011. http://dx.doi.org/10.1109/icma.2011.5985753.
Der volle Inhalt der QuelleKirkwood, William J. „FOCE: The evolution of in situ Free Ocean CO2 Enrichment experiments“. In 2015 IEEE Underwater Technology (UT). IEEE, 2015. http://dx.doi.org/10.1109/ut.2015.7108322.
Der volle Inhalt der QuelleKebkal, Veronika, Konstantin Kebkal und Oleksiy Kebkal. „Experiments with network coding in dynamic underwater acoustic channel“. In 2014 Underwater Communications and Networking (UComms). IEEE, 2014. http://dx.doi.org/10.1109/ucomms.2014.7017136.
Der volle Inhalt der QuellePOTTER, JR, und S. MILLER. „SOME RECENT EXPERIMENTS ON ACOUSTIC FLUCTUATIONS IN THE SEA“. In Fluctuation Phenomena in Underwater Acoustics 1986. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/22301.
Der volle Inhalt der QuelleChusov, Andrey A., Lubov Statsenko und Yulia Mirgorodskaya. „Applying high-performance computing to conducting experiments on sound propagation“. In 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2015. http://dx.doi.org/10.1121/2.0000129.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Underwater Experiments"
Leininger, L. Validation of Air-Backed Underwater Explosion Experiments with ALE3D. Office of Scientific and Technical Information (OSTI), Februar 2005. http://dx.doi.org/10.2172/917915.
Der volle Inhalt der QuelleMaxey. L51470 Experimental Evaluation of Fracture Propagation in an Underwater Gas Pipeline. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), Februar 1985. http://dx.doi.org/10.55274/r0011312.
Der volle Inhalt der QuelleJones, Theodore G., Jacob Grun, H. R. Burris und Charles Manka. Feasibility Experiments for Underwater Shock and Bubble Generation with a High-Power Laser. Fort Belvoir, VA: Defense Technical Information Center, April 1999. http://dx.doi.org/10.21236/ada362880.
Der volle Inhalt der QuelleWolff, Patrick, Brett DeGregorio und Aaron Rice. Demonstration of subsurface passive acoustic monitoring (SPAM) to survey for and estimate populations of imperiled underwater-calling frogs. Engineer Research and Development Center (U.S.), November 2021. http://dx.doi.org/10.21079/11681/42386.
Der volle Inhalt der QuelleKamegai, Minao, und J. W. White. Computer simulations of WIGWAM underwater experiment. Office of Scientific and Technical Information (OSTI), November 1993. http://dx.doi.org/10.2172/10110688.
Der volle Inhalt der QuelleGuigne, J. Y. Design and Experimental Development of An "Underwater Acoustic Drill". Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1987. http://dx.doi.org/10.4095/123302.
Der volle Inhalt der QuelleMahmoud, Hussam, Guillermo Riveros, Lauren Hudak und Emad Hassan. Experimental fatigue evaluation of underwater steel panels retrofitted with fiber polymers. Engineer Research and Development Center (U.S.), März 2023. http://dx.doi.org/10.21079/11681/46647.
Der volle Inhalt der QuelleDILLON CONSULTING LIMITED CAMBRIDGE (CANADA). Determining the Properties and Capabilities of an Existing Experimental Large Loop EM61 Underwater UXO Detector. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada469854.
Der volle Inhalt der QuelleRiedel, J. S. Shallow Water Stationkeeping of an Autonomous Underwater Vehicle: The Experimental Results of a Disturbance Compensation Controller. Fort Belvoir, VA: Defense Technical Information Center, Januar 2005. http://dx.doi.org/10.21236/ada436011.
Der volle Inhalt der QuellePehme, Peeter. Determining the Properties and Capabilities of an Existing Experimental Large Loop EM 61 Underwater UXO Detector. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada594402.
Der volle Inhalt der Quelle