Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Underwater and ultrasonic“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Underwater and ultrasonic" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Underwater and ultrasonic"
Wu, Zheng Long, Jie Li und Zhen Yu Guan. „Feature Extraction of Underwater Target Ultrasonic Echo Based on Wavelet Transform“. Applied Mechanics and Materials 599-601 (August 2014): 1517–22. http://dx.doi.org/10.4028/www.scientific.net/amm.599-601.1517.
Der volle Inhalt der QuelleSonomatic Ltd. „Underwater ultrasonic corrosion mapping system“. NDT International 23, Nr. 1 (Februar 1990): 58–59. http://dx.doi.org/10.1016/0308-9126(90)91593-i.
Der volle Inhalt der QuelleSonomatic Ltd. „Underwater ultrasonic corrosion mapping system“. NDT & E International 23, Nr. 1 (Februar 1990): 58–59. http://dx.doi.org/10.1016/0963-8695(90)90857-f.
Der volle Inhalt der QuelleNagashima, Yutaka, Takakazu Ishimatsu und Jamal Tariq Mian. „AUV with Variable Vector Propeller“. Journal of Robotics and Mechatronics 12, Nr. 1 (20.02.2000): 60–65. http://dx.doi.org/10.20965/jrm.2000.p0060.
Der volle Inhalt der QuelleWidjaja, Raden Sjarief, Dedi Budi Purwanto, Andi Trimulyono und Muhammad Nur Abdullah Hafizh. „Design of Remotely Operated Underwater Vehicle (ROUV) for Underwater Metal Detection“. Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan 21, Nr. 2 (29.05.2024): 73–80. http://dx.doi.org/10.14710/kapal.v21i2.62767.
Der volle Inhalt der QuelleHong, Xiaobin, Liuwei Huang, Shifeng Gong und Guoquan Xiao. „Shedding Damage Detection of Metal Underwater Pipeline External Anticorrosive Coating by Ultrasonic Imaging Based on HOG + SVM“. Journal of Marine Science and Engineering 9, Nr. 4 (29.03.2021): 364. http://dx.doi.org/10.3390/jmse9040364.
Der volle Inhalt der QuelleZhu, Jie, Jia Cheng Guo, Wei Wang und Jia You Wang. „Effect of Arc Current Ultrasonic-Frequency Pulsation on Underwater Wet Arc Welding Quality“. Advanced Materials Research 763 (September 2013): 174–78. http://dx.doi.org/10.4028/www.scientific.net/amr.763.174.
Der volle Inhalt der QuelleNagashima, Yutaka, Nobuyoshi Taguchi, Takakazu Ishimatsu und Hirofumi Inoue. „Development of a Compact Autonomous Underwater vehicle Using Varivec Propeller“. Journal of Robotics and Mechatronics 14, Nr. 2 (20.04.2002): 112–17. http://dx.doi.org/10.20965/jrm.2002.p0112.
Der volle Inhalt der QuelleSHIRAI, Kazuhiro. „Development of Underwater Ultrasonic Positioning System“. Journal of the Marine Acoustics Society of Japan 31, Nr. 4 (2004): 233–40. http://dx.doi.org/10.3135/jmasj.31.233.
Der volle Inhalt der QuelleInoue, Takeshi, und Takatoshi Nada. „Underwater low‐frequency ultrasonic wave transmitter“. Journal of the Acoustical Society of America 83, Nr. 6 (Juni 1988): 2470. http://dx.doi.org/10.1121/1.396290.
Der volle Inhalt der QuelleDissertationen zum Thema "Underwater and ultrasonic"
Wylie, Stephen Robert. „An underwater ultrasonic imaging system“. Thesis, University of Liverpool, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.266220.
Der volle Inhalt der QuelleSalido, Monzú David, und Sánchez Oliver Roldán. „Robot Positioning System : Underwater Ultrasonic Measurement“. Thesis, Mälardalen University, School of Innovation, Design and Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-5817.
Der volle Inhalt der QuelleThis document provides a description about how the problem of the detection of thecenter of a defined geometry object was solved.This named object has been placed in an experimental environment surrounded bywater to be explored using microwaves under the water, to try to find a possibletumor. The receiver antenna is fixed in the tip of the tool of an ABB robot.Due to this working method, it was necessary to locate the center of this object tomake correctly the microwave scanning turning always around the actual center. Thiswork not only consist in give a hypothetic solution to the people who gave us theresponsibility of solve their problem, it is also to actually develop a system whichcarries out the function explained before.For the task of measuring the distance between the tip of the tool where themicrowave antenna is, ultrasonic sensors has been used, as a complement of acomplete system of communication between the sensor and finally the robot handler,using Matlab as the main controller of the whole system.One of these sensors will work out of water, measuring the zone of the object which isout of the water. In the other hand, as the researching side of the thesis, a completeultrasonic sensor will be developed to work under water, and the results obtained willbe shown as the conclusion of our investigation.The document provides a description about how the hardware and software necessaryto implement the system mentioned and some equipment more which were essentialto the final implementation was developed step by step.
Koosha, Abdolrahim. „Ultrasonic transducers for air and underwater communication“. Thesis, Kingston University, 1991. http://eprints.kingston.ac.uk/20553/.
Der volle Inhalt der QuelleJohansson, Patrick. „Capacitive Micromachined Ultrasonic Transducers for Underwater Applications“. Thesis, Uppsala universitet, Institutionen för fysik och astronomi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447067.
Der volle Inhalt der QuelleMoya, Jorge A. Salcedo. „Ultrasonic inspection of underwater piping system with thick coatings“. Connect to resource, 1994. http://rave.ohiolink.edu/etdc/view.cgi?acc%5Fnum=osu1260632892.
Der volle Inhalt der QuelleFloyd, Charles Alan. „Design and implementation of a collision avoidance system for the NPS Autonomous Underwater Vehicle (AUV II) utilizing ultrasonic sensors“. Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28100.
Der volle Inhalt der QuelleAnderson, Shaun David. „Space-time-frequency processing from the analysis of bistatic scattering for simple underwater targets“. Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/45771.
Der volle Inhalt der QuelleReal, Gaultier. „An ultrasonic testbench for reproducing the degradation of sonar performance in fluctuating ocean“. Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4753/document.
Der volle Inhalt der QuelleThe ocean medium is subject to many sources of fluctuations. The most critical ones were found to be internal waves, occurring frequently and inducing fluctuations of the spatial distribution of the sound speed field. Because of the fairly long period of this phenomenon as compared to the propagation time of acoustic waves for sonar applications, the process can be considered frozen in time for each stochastic realization of the medium. The development of testbenches allowing to reproduce the effect of atmospheric turbulence on optic waves propagation under laboratory conditions lead to considerable advancements in the field of adaptive optics. We therefore see a vivid interest in being able to reproduce the effects of internal waves on sound propagation in controlled environments. An experimental protocol in a water tank is proposed: an ultrasonic wave is transmitted through a randomly rough acoustic lens, producing distortions of the received wavefront. The induced signal fluctuations are controlled by tuning the statistical parameters of the roughness of the lens. Especially, they are linked to dimensional parameters allowing to classify the configurations into regimes of fluctuations and to predict the statistical moment of the acoustic pressure up to the fourth order. A remarkable relevance of our experimental scheme is found when compared to theoretical and simulation results. The degradation of classical signal processing techniques when applied to our acquired data highlights the need for corrective detection techniques. A review of the existing techniques in other domains is proposed
Kourchi, Hasna. „Μétaréseaux pοur la réflexiοn et la transmissiοn anοrmales de frοnts d’οnde acοustique dans l’eau“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH36.
Der volle Inhalt der QuelleA metagrating is a periodic assembly of scatterers designed to reflect or refract a wave toward an anomalous direction, not predicted by Snell's law. In this work, we designed, fabricated, and experimentally characterized such metagratings for the control of ultrasonic waves in water, using brass tubes and cylinders as well as 3D-printed plastic supports. These metagratings enable the redirection of an incident wavefront to an arbitrarily desired direction with high efficiency (close to 100%), both in reflection on a surface (e.g., the water/air interface) and in transmission. The theoretical approach is based on the principles of Bragg diffraction and constructive and destructive wave interactions. The results of this thesis demonstrate the efficiency of metagratings in inducing acoustic phenomena such as retroreflection and asymmetric wave response, achieved through the use of resonant and non-resonant structures, validated by finite element simulations and experiments. This research opens new perspectives for the manipulation of underwater acoustic waves, with potential applications in the fields of wave detection, absorption, and reflection in marine environments
Pierce, Robert S. „Signal enhancement of laser generated ultrasound for non-destructive testing“. Thesis, Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/18395.
Der volle Inhalt der QuelleBücher zum Thema "Underwater and ultrasonic"
Kucharski, William M. Underwater inspection of coastal structures using commercially available sonars. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1990.
Den vollen Inhalt der Quelle findenKucharski, William M. Underwater inspection of coastal structures using commercially available sonars. [Vicksburg, Miss: U.S. Army Engineer Waterways Experiment Station, 1990.
Den vollen Inhalt der Quelle findenFloyd, Charles Alan. Design and implementation of a collision avoidance system for the NPS Autonomous Underwater Vehicle (AUV II) utilizing ultrasonic sensors. Monterey, Calif: Naval Postgraduate School, 1991.
Den vollen Inhalt der Quelle findenStroud, John Steven. Twinkling of underwater sound reflected by one realization from a Gaussian spectrum population of corrugated surfaces: Experiments and comparisons with a catastrophe theory approximation. 1995.
Den vollen Inhalt der Quelle findenUrick, Robert J. Principles of underwater sound. 3. Aufl. Peninsula, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Underwater and ultrasonic"
Ye, Jianxiong, Zhigang Li, Xingling Peng, Jinlan Zhou und Bo Guo. „Study of Ultrasonic Phased Array in Underwater Welding“. In Transactions on Intelligent Welding Manufacturing, 175–82. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7043-3_13.
Der volle Inhalt der QuelleTalmant, Maryline, und Gérard Quentin. „Study of the Pseudo — Lamb Wave So Generated in Thin Cylindrical Shells Insonified by Short Ultrasonic Pulses in Water“. In Progress in Underwater Acoustics, 137–44. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1871-2_17.
Der volle Inhalt der QuelleVoloshchenko, Vadim Yu, und Elizaveta V. Voloshchenko. „The Underwater Ultrasonic Equipment with the Nonlinear Acoustics Effect's Application“. In Exploration and Monitoring of the Continental Shelf Underwater Environment, 211–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2018. http://dx.doi.org/10.1002/9781119488309.ch7.
Der volle Inhalt der QuelleCrowther, P. A., und A. Hansla. „The Lifetimes, Velocities and Probable Origin of Sonic and Ultrasonic Noise Sources on the Sea Surface“. In Natural Physical Sources of Underwater Sound, 379–92. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1626-8_30.
Der volle Inhalt der QuelleAzcuaga, Valery F. Godínez, Jorge Salcedo und Laszlo Adler. „Ultrasonic Inspection of an Underwater Piping System Covered with Thick Coating“. In Review of Progress in Quantitative Nondestructive Evaluation, 1867–74. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0383-1_244.
Der volle Inhalt der QuelleChaitanya, G. M. S. K., Govind Kumar Sharma, Anish Kumar und B. Purnachandra Rao. „Development of Automated Scanners for Underwater and Under-Sodium Ultrasonic Imaging“. In Communications in Computer and Information Science, 109–17. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2845-8_9.
Der volle Inhalt der QuelleVan Vinh, Phan, Nguyen Hoang Thoan, Nguyen Xuan Duong und Dang Duc Dung. „Fabrication of Underwater Ultrasonic Transducer by Using Lead-Free Piezoelectric Materials“. In Lecture Notes in Mechanical Engineering, 683–88. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-99666-6_99.
Der volle Inhalt der QuelleVan Buren, A. L., und J. E. Blue. „Calibration of Underwater Acoustic Transducers at NRL/USRD“. In Power Transducers for Sonics and Ultrasonics, 221–41. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76271-0_18.
Der volle Inhalt der Quelle„Appendix: Ultrasonic Sensing Systems in the Air Medium“. In Digital Underwater Acoustic Communications, 255–68. Elsevier, 2017. http://dx.doi.org/10.1016/b978-0-12-803009-7.15001-9.
Der volle Inhalt der Quelle„Ultrasonic monitoring of lab-scaled underwater landslides“. In Landslides and Engineered Slopes. From the Past to the Future, Two Volumes + CD-ROM, 1341–44. CRC Press, 2008. http://dx.doi.org/10.1201/9780203885284-183.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Underwater and ultrasonic"
Vishwanatha, Meghana, Karman Selvam, Nooshin Saeidi, Maik Wiemer und Harald Kuhn. „Underwater sensing applications using Capacitive Micromachined Ultrasonic Transducers (CMUTs)“. In 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), 1–4. IEEE, 2024. https://doi.org/10.1109/uffc-js60046.2024.10793795.
Der volle Inhalt der QuelleLi, Yujia, King Shing Lo, Dongmei Huang, Chao Lu und P. K. A. Wai. „High-sensitivity, high-speed underwater ultrasonic detection based on time-stretched self-coherent detection“. In CLEO: Applications and Technology, JTu2A.110. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jtu2a.110.
Der volle Inhalt der QuelleBakar, S. A. A., N. R. Ong, M. H. A. Aziz, J. B. Alcain, W. M. W. N. Haimi und Z. Sauli. „Underwater detection by using ultrasonic sensor“. In 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017). Author(s), 2017. http://dx.doi.org/10.1063/1.5002499.
Der volle Inhalt der QuelleThakare, Dhawal R., Prabhu Rajagopal und Pierre Belanger. „Ultrasonic guided waves in bone system with degradation“. In 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2016. http://dx.doi.org/10.1121/2.0000147.
Der volle Inhalt der QuelleLeighton, Timothy G. „The acoustic bubble: Oceanic bubble acoustics and ultrasonic cleaning“. In 5th Pacific Rim Underwater Acoustics Conference. Acoustical Society of America, 2015. http://dx.doi.org/10.1121/2.0000121.
Der volle Inhalt der QuelleGerdt, David W., Martin C. Baruch und Charles M. Adkins. „Ultrasonic liquid crystal-based underwater acoustic imaging“. In Electronic Imaging '99, herausgegeben von Ranganathan Shashidhar. SPIE, 1999. http://dx.doi.org/10.1117/12.343873.
Der volle Inhalt der QuelleNorli, Petter, Emilie Vallée, Magne Aanes, Asbjørn Spilde, Henrik Duerud, Fabrice Prieur, Tore Bjåstad, Øyvind Standal und Martijn Frijlink. „Ultrasonic detection of stress corrosion cracks in gaseous atmosphere using Broadband transducers“. In International Conference on Underwater Acoustics. ASA, 2019. http://dx.doi.org/10.1121/2.0001334.
Der volle Inhalt der QuelleSAILLANT, JF, S. TRIGER, F. AFROUKH, J. WALLACE, L. WANG, S. COCHRAN und D. CUMMING. „MOSAIC: A SCALABLE, MODULAR SYSTEM FOR UNDERWATER ULTRASONIC IMAGING“. In DETECTION & CLASSIFICATION OF UNDERWATER TARGETS 2007. Institute of Acoustics, 2023. http://dx.doi.org/10.25144/17797.
Der volle Inhalt der QuelleKleiman, Jacob, Yuri Kudryavtsev und Alexander Lugovskoy. „Underwater Stress Relief and Fatigue Improvement by Ultrasonic Peening“. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/omae2012-83469.
Der volle Inhalt der QuelleSCUDDER, LP, DA HUTCHINS und JT MOTTRAM. „THE ULTRASONIC IMPULSE RESPONSE OF UNIDIRECTIONAL CARBON FIBRE LAMINATES“. In Acoustics of Advanced Materials for Underwater Applications 1993. Institute of Acoustics, 2024. http://dx.doi.org/10.25144/20599.
Der volle Inhalt der Quelle