Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Underground water reservoir“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Underground water reservoir" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Underground water reservoir"
Jing, Yan Dong, Long Cang Shu, Ming Jiang Deng, Emmanuel Kwame Appiah-Adjei, Shuai Ling Zhang, Xiao Hui Wang und Ping He. „Optimal Operation of Underground Reservoir in Tailan River Basin“. Applied Mechanics and Materials 212-213 (Oktober 2012): 88–98. http://dx.doi.org/10.4028/www.scientific.net/amm.212-213.88.
Der volle Inhalt der QuellePujades, Estanislao, Philippe Orban, Pierre Archambeau, Vasileios Kitsikoudis, Sebastien Erpicum und Alain Dassargues. „Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Interactions with Groundwater Flow“. Energies 13, Nr. 9 (08.05.2020): 2353. http://dx.doi.org/10.3390/en13092353.
Der volle Inhalt der QuelleSudinda, Teddy W. „Analisa Air Bawah Tanah pada Lokasi Tambang Batubara Tanah Laut Kalimantan Selatan“. INDONESIAN JOURNAL OF CONSTRUCTION ENGINEERING AND SUSTAINABLE DEVELOPMENT (CESD) 4, Nr. 1 (30.06.2021): 11. http://dx.doi.org/10.25105/cesd.v4i1.9541.
Der volle Inhalt der QuelleSun, Ya, Shi Guo Xu, Ping Ping Kang, Yan Zhao Fu und Tian Xiang Wang. „Impacts of Artificial Underground Reservoir on Groundwater Environment in the Reservoir and Downstream Area“. International Journal of Environmental Research and Public Health 16, Nr. 11 (30.05.2019): 1921. http://dx.doi.org/10.3390/ijerph16111921.
Der volle Inhalt der QuelleKitsikoudis, Vasileios, Pierre Archambeau, Benjamin Dewals, Estanislao Pujades, Philippe Orban, Alain Dassargues, Michel Pirotton und Sebastien Erpicum. „Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics“. Energies 13, Nr. 14 (08.07.2020): 3512. http://dx.doi.org/10.3390/en13143512.
Der volle Inhalt der QuelleYan, B., Y. Xie, C. J. Guo und C. S. Zhao. „Analysis of the impact of Shifosi Reservoir water level on underground water“. Journal of Water and Climate Change 9, Nr. 2 (29.03.2018): 367–82. http://dx.doi.org/10.2166/wcc.2018.057.
Der volle Inhalt der QuellePujades, Estanislao, Philippe Orban, Pierre Archambeau, Sebastien Erpicum und Alain Dassargues. „Numerical study of the Martelange mine to be used as underground reservoir for constructing an Underground Pumped Storage Hydropower plant“. Advances in Geosciences 45 (27.07.2018): 51–56. http://dx.doi.org/10.5194/adgeo-45-51-2018.
Der volle Inhalt der QuelleFeyzullayev, A. A., und A. G. Gojayev. „Influence of geological reservoir heterogeneity on exploitation conditions of Garadagh field / underground gas storage (Azerbaijan)“. Gornye nauki i tekhnologii = Mining Science and Technology (Russia) 6, Nr. 2 (14.07.2021): 105–13. http://dx.doi.org/10.17073/2500-0632-2021-2-105-113.
Der volle Inhalt der QuelleKurchikov, A. R., und M. V. Vashurina. „ASPECTS OF ECOLOGY SAFETY AT OPERATING THE FRESH GROUND WATERS INTAKE FACILITIES FOR RESERVOIR PRESSURE MAINTENANCE PURPOSES IN OIL FIELDS OF WEST SIBERIA“. Oil and Gas Studies, Nr. 1 (28.02.2016): 21–27. http://dx.doi.org/10.31660/0445-0108-2016-1-21-27.
Der volle Inhalt der QuelleCao, Jie, Baoyuan Yuan und Yun Bai. „Simulation Study on Image Characteristics of Typical GPR Targets in Water Conservancy Projects“. Geofluids 2021 (16.03.2021): 1–13. http://dx.doi.org/10.1155/2021/5550620.
Der volle Inhalt der QuelleDissertationen zum Thema "Underground water reservoir"
Gomboš, Michal. „Vodojemy - Brno, Žlutý kopec“. Master's thesis, Vysoké učení technické v Brně. Fakulta architektury, 2021. http://www.nusl.cz/ntk/nusl-451226.
Der volle Inhalt der QuelleLee, Ka-kwok Algy. „Geological model for the proposed underground tunnel salt water reservoirs at Lung Fu Shan“. Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B40722429.
Der volle Inhalt der Quelle李家國 und Ka-kwok Algy Lee. „Geological model for the proposed underground tunnel salt water reservoirs at Lung Fu Shan“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B40722429.
Der volle Inhalt der QuelleBayagbon, Anthony Mamurhomu. „Impact assessment of the environmental protection policies in the upstream oil industry in Nigeria / A.M. Bayagbon“. Thesis, North-West University, 2011. http://hdl.handle.net/10394/6276.
Der volle Inhalt der QuelleThesis (M.Ing. (Development and Management Engineering))--North-West University, Potchefstroom Campus, 2011
Bücher zum Thema "Underground water reservoir"
Platov, Nikolay. Fundamentals of engineering Geology. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1091050.
Der volle Inhalt der QuelleSenter, Eric. Ground water storage capacity of a portion of the East Bay Plain, Alameda County, California. [Sacramento]: Dept. of Water Resources, Central District, 1994.
Den vollen Inhalt der Quelle findenLichner, Marián. Banskoštiavnické tajchy. Banská Štiavnica: Harmony, 1997.
Den vollen Inhalt der Quelle findenTakasaki, K. J. Evaluation of major dike-impounded ground-water reservoirs, Island of Oahu. Washington: US GPO, 1985.
Den vollen Inhalt der Quelle findenSerebryakov, Andrey, und Gennadiy Zhuravlev. Exploitation of oil and gas fields by horizontal wells. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/971768.
Der volle Inhalt der QuelleNew Jersey. Legislature. Senate. Budget and Appropriations Committee. Public hearing before Senate Budget and Appropriations Committee: Senate committee substitute for Senate concurrent resolution nos. 41 and 60 of 1996 : amends Constitution to dedicate 4 percent of corporation business tax revenues to fund hazardous discharge cleanup, underground storage tank improvements, and surface water quality projects. Trenton, N.J: Office of Legislative Services, Public Information Office, Hearing Unit, 1996.
Den vollen Inhalt der Quelle finden1937-, Waddell K. M., und Geological Survey (U.S.), Hrsg. Review of water demand and utilization studies for the Provo River drainage basin, and review of a study of the effects of the proposed Jordanelle reservoir on seepage to underground mines, Bonneville Unit of the Central Utah Project. Salt Lake City, Utah: U.S. Geological Survey, 1991.
Den vollen Inhalt der Quelle findenF, Crozes Gil, AWWA Research Foundation und American Water Works Association, Hrsg. Improving clearwell design for CT compliance. [Denver]: AWWA Research Foundation and American Water Works Association, 1999.
Den vollen Inhalt der Quelle finden(Editor), Gil F. Crozes, James P. Hagstrom (Editor), Mark M. Clark (Editor), Joel Ducoste (Editor) und Catherine Burns (Editor), Hrsg. Improving Clearwell Design for Ct Compliance. Amer Water Works Assn, 1998.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Underground water reservoir"
Vladut, Thomas. „Reservoir Induced Seismicity: Twenty Years of Research Associated with Water Storage Impoundment and Operations.“ In Earthquakes Induced by Underground Nuclear Explosions, 375–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57764-2_29.
Der volle Inhalt der QuelleRastogi, B. K. „Correlation of Filling History with Seismicity Near Artificial Water Reservoirs“. In Earthquakes Induced by Underground Nuclear Explosions, 343–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57764-2_27.
Der volle Inhalt der QuelleMasihi, Mohsen, und Peter R. „Percolation Approach in Underground Reservoir Modeling“. In Water Resources Management and Modeling. InTech, 2012. http://dx.doi.org/10.5772/36458.
Der volle Inhalt der QuelleMa, Ji-Ye, Jia-Quan Wang, Jia-Zhong Qian und Xiao-Guang Ge. „An underground reservoir supplied with Huanghe River water“. In Research Basins and Hydrological Planning, 149–53. Taylor & Francis, 2004. http://dx.doi.org/10.1201/9781439833858.ch20.
Der volle Inhalt der QuelleSwyngedouw, Erik. „The City in a Glass of Water: Circulating Water, Circulating Power“. In Social Power and the Urbanization of Water. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198233916.003.0013.
Der volle Inhalt der Quelle„Underground Dams and Reservoirs“. In Water Resources Engineering in Karst, 209–30. CRC Press, 2004. http://dx.doi.org/10.1201/9780203499443-9.
Der volle Inhalt der Quelle„Underground Dams and Reservoirs“. In Water Resources Engineering in Karst. CRC Press, 2004. http://dx.doi.org/10.1201/9780203499443.ch6.
Der volle Inhalt der Quelle„Main Characteristics of an Aquifer The main function of the aquifer is to provide underground storage for the retention and release of gravitational water. Aquifers can be characterized by indices that reflect their ability to recover moisture held in pores in the earth (only the large pores give up their water easily). These indices are related to the volume of exploitable water. Other aquifer characteristics include: • Effective porosity corresponds to the ratio of the volume of “gravitational” water at saturation, which is released under the effect of gravity, to the total volume of the medium containing this water. It generally varies between 0.1% and 30%. Effective porosity is a parameter determined in the laboratory or in the field. • Storage coefficient is the ratio of the water volume released or stored, per unit of area of the aquifer, to the corresponding variations in hydraulic head 'h. The storage coefficient is used to characterize the volume of useable water more precisely, and governs the storage of gravitational water in the reservoir voids. This coefficient is extremely low for confined groundwater; in fact, it represents the degree of the water compression. • Hydraulic conductivity at saturation relates to Darcy’s law and characterizes the effect of resistance to flow due to friction forces. These forces are a function of the characteristics of the soil matrix, and of the fluid viscosity. It is determined in the laboratory or directly in the field by a pumping test. • Transmissivity is the discharge of water that flows from an aquifer per unit width under the effect of a unit of hydraulic gradient. It is equal to the product of the saturation hydraulic conductivity and of the thickness (height) of the groundwater. • Diffusivity characterizes the speed of the aquifer response to a disturbance: (variations in the water level of a river or the groundwater, pumping). It is expressed by the ratio between the transmissivity and the storage coefficient. Effective and Fictitious Flow Velocity: Groundwater Discharge As we saw earlier in this chapter, water flow through permeable layers in saturated zones is governed by Darcy’s Law. The flow velocity is in reality the fictitious velocity of the water flowing through the total flow section. Bearing in mind that a section is not necessarily representative of the entire soil mass, Figure 7.7 illustrates how flow does not follow a straight path through a section; in fact, the water flows much more rapidly through the available pathways (the tortuosity effect). The groundwater discharge Q is the volume of water per unit of time that flows through a cross-section of aquifer under the effect of a given hydraulic gradient. The discharge of a groundwater aquifer through a specified soil section can be expressed by the equation:“. In Hydrology, 229–30. CRC Press, 2010. http://dx.doi.org/10.1201/b10426-57.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Underground water reservoir"
Dehghan, Ali A. „An Experimental Investigation of Thermal Stratification in an Underground Water Reservoir“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56784.
Der volle Inhalt der QuelleZhang, XiaoHui, GenMin Zhu, DongFeng Zhao, JiaJun Ye, JianKang Shen und MingQing Zhang. „Large Underground Water Seal Reservoir Jet Disturbance System“. In 2018 7th International Conference on Energy and Environmental Protection (ICEEP 2018). Paris, France: Atlantis Press, 2018. http://dx.doi.org/10.2991/iceep-18.2018.222.
Der volle Inhalt der QuelleAkhmetzhanova, Gauhar, Beibarys Bakytzhan und Aruzhan Kopzhasarova. „Water exploration works for reservoir pressure maintenance at Brown Field X“. In SEG 2020 Workshop: Underground Water and Karst Imaging, 28 August 2020, Virtual. Society of Exploration Geophysicists, 2020. http://dx.doi.org/10.1190/uwki2020_03.1.
Der volle Inhalt der QuelleItotoi, Ibi-Ada, Taju Gbadamosi, Christian Ihwiwhu, Udeme John, Anita Odiete, Precious Okoro, Maduabuchi Ndubueze, Erome Utunedi, Adedeji Awujoola und Sola Adesanya. „Produced Water Re-Injection: An Integrated Subsurface Approach to Planning and Execution for Downhole Produced Water Disposal in the Niger Delta“. In SPE Nigeria Annual International Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/207088-ms.
Der volle Inhalt der QuelleTien, Chihming, Hsiaowei Lin, Jinfa Chen und Weijr Wu. „Case Study of Underground Gas Storage in a Lean Gas Condensate Reservoir with Strong Water-Drive“. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/196363-ms.
Der volle Inhalt der QuelleWasilczyk, Adam. „DETERMINATION OF WATER INFLOW FROM DESIGNING BOREHOLES, DRAINAGES OF THE UNDERGROUND WATER RESERVOIR ON THE EXAMPLE OF SELECTED POLISH COAL MINE“. In 17th International Multidisciplinary Scientific GeoConference SGEM2017. Stef92 Technology, 2017. http://dx.doi.org/10.5593/sgem2017/12/s02.030.
Der volle Inhalt der QuelleJin, Chang, Gao Shusheng und Xu Ke. „The Simulation Study of Multicycle Injection-production of the Underground Gas Storage in the High Water Cut Reservoir“. In AASRI International Conference on Industrial Electronics and Applications (IEA 2015). Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/iea-15.2015.92.
Der volle Inhalt der QuelleChang, Jin, Shusheng Gao und Ke Xu. „The simulation study of multicycle injection-production of the underground gas storage in the high water cut reservoir“. In 3rd International Conference on Future Energy, Environment and Materials. Southampton, UK: WIT Press, 2015. http://dx.doi.org/10.2495/feem140071.
Der volle Inhalt der QuelleNopsiri, Noppanan, Pithak Harnboonzong und Katha Wuthicharn. „Shallow Gas Reservoir Development in Offshore Field, Myanmar: Tapping New Reserves with Novel Approach“. In IADC/SPE Asia Pacific Drilling Technology Conference. SPE, 2021. http://dx.doi.org/10.2118/201053-ms.
Der volle Inhalt der QuelleSaito, Hiroshi, und Tomihiro Taki. „Remediation Strategy, Capping Construction and Ongoing Monitoring for the Mill Tailings Pond, Ningyo-Toge Uranium Mine, Japan“. In ASME 2013 15th International Conference on Environmental Remediation and Radioactive Waste Management. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icem2013-96021.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Underground water reservoir"
Guidati, Gianfranco, und Domenico Giardini. Joint synthesis “Geothermal Energy” of the NRP “Energy”. Swiss National Science Foundation (SNSF), Februar 2020. http://dx.doi.org/10.46446/publication_nrp70_nrp71.2020.4.en.
Der volle Inhalt der Quelle