Auswahl der wissenschaftlichen Literatur zum Thema „Unconstrained binary quadratic“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Unconstrained binary quadratic" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Unconstrained binary quadratic"

1

Verma, Amit, und Mark Lewis. „Goal seeking Quadratic Unconstrained Binary Optimization“. Results in Control and Optimization 7 (Juni 2022): 100125. http://dx.doi.org/10.1016/j.rico.2022.100125.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Lewis, Mark, John Metcalfe und Gary Kochenberger. „Robust optimisation of unconstrained binary quadratic problems“. International Journal of Operational Research 36, Nr. 4 (2019): 441. http://dx.doi.org/10.1504/ijor.2019.10025701.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Lewis, Mark, John Metcalfe und Gary Kochenberger. „Robust optimisation of unconstrained binary quadratic problems“. International Journal of Operational Research 36, Nr. 4 (2019): 441. http://dx.doi.org/10.1504/ijor.2019.104050.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Boettcher, S. „Extremal Optimization for Quadratic Unconstrained Binary Problems“. Physics Procedia 68 (2015): 16–19. http://dx.doi.org/10.1016/j.phpro.2015.07.102.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Wang, Yang, Zhipeng Lü, Fred Glover und Jin-Kao Hao. „Path relinking for unconstrained binary quadratic programming“. European Journal of Operational Research 223, Nr. 3 (Dezember 2012): 595–604. http://dx.doi.org/10.1016/j.ejor.2012.07.012.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Kochenberger, Gary, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo Wang und Yang Wang. „The unconstrained binary quadratic programming problem: a survey“. Journal of Combinatorial Optimization 28, Nr. 1 (18.04.2014): 58–81. http://dx.doi.org/10.1007/s10878-014-9734-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Glover, Fred, und Jin-Kao Hao. „f-Flip strategies for unconstrained binary quadratic programming“. Annals of Operations Research 238, Nr. 1-2 (11.12.2015): 651–57. http://dx.doi.org/10.1007/s10479-015-2076-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Rahmeh, Samer, und Adam Neumann. „HUBO & QUBO and Prime Factorization“. International Journal of Bioinformatics and Intelligent Computing 3, Nr. 1 (20.02.2024): 45–69. http://dx.doi.org/10.61797/ijbic.v3i1.301.

Der volle Inhalt der Quelle
Annotation:
This document details the methodology and steps taken to convert Higher Order Unconstrained Binary Optimization (HUBO) models into Quadratic Unconstrained Binary Optimization (QUBO) models. The focus is primarily on prime factorization problems; a critical and computationally intensive task relevant in various domains including cryptography, optimization, and number theory. The conversion from Higher-Order Binary Optimization (HUBO) to Quadratic Unconstrained Binary Optimization (QUBO) models is crucial for harnessing the capabilities of advanced computing methodologies, particularly quantum computing and DYNEX neuromorphic computing. Quantum computing offers potential exponential speedups for specific problems through its intrinsic parallelism capabilities. Conversely, DYNEX neuromorphic computing enhances efficiency and accelerates the resolution of intricate, pattern-oriented tasks by simulating memristors in GPUs, employing a highly decentralized approach, via Blockchain technology. This transformation enables the exploitation of these cutting-edge computing paradigms to address complex optimization challenges effectively. Through detailed explanations, mathematical formulations, and algorithmic strategies, this document aims to provide a comprehensive guide to understanding and implementing the conversion process from HUBO to QUBO. It underscores the importance of such transformations in making prime factorization computationally feasible on both existing classical computers and emerging computing technologies.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Merz, Peter, und Kengo Katayama. „Memetic algorithms for the unconstrained binary quadratic programming problem“. Biosystems 78, Nr. 1-3 (Dezember 2004): 99–118. http://dx.doi.org/10.1016/j.biosystems.2004.08.002.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Liefooghe, Arnaud, Sébastien Verel und Jin-Kao Hao. „A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming“. Applied Soft Computing 16 (März 2014): 10–19. http://dx.doi.org/10.1016/j.asoc.2013.11.008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Unconstrained binary quadratic"

1

Battikh, Rabih. „La résοlutiοn de prοblème quadratique binaire par des méthοdes d'οptimisatiοn exactes et apprοchées“. Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH20.

Der volle Inhalt der Quelle
Annotation:
Dans cette thèse, nous avons présenté un nouvel algorithme hybride (HA) pour la résolution du problème (UQP). Cet algorithme est basé sur la combinaison d'un bloc de cinq procédures spéciales et de la méthode du recuit simulé. Nos procédures sont très efficaces et rapides, mais malheureusement, parfois elles sont bloquées par un minimum local. Pour surmonter cet inconvénient, nous les avons combinées avec un algorithme de recuit simulé. Ensuite, nous avons répété ces procédures plusieurs fois pour obtenir la meilleure solution en utilisant notre algorithme hybride.Nous avons remarqué que l'écart entre la solution trouvée par (HA) et le logiciel CPLEX est très faible, ce résultat implique l'efficacité de notre stratégie. Par ailleurs, nous avons intégré notre méthode hybride à un problème de relaxation semi-définie du (UQP) dans le cadre d'une stratégie de branch and bound. Pour faciliter la résolution du (UQP), nous suggérons d'appliquer des critères de fixation afin de réduire la taille du problème et d'accélérer l'obtention d'une solution exacte. La qualité de la borne inférieure trouvée par notre code (QPTOSDP) est très bonne, mais le temps d'exécution augmente avec la taille du problème. Les résultats numériques prouvent l'exactitude de notre solution optimale et l'efficacité et la robustesse de notre approche.Nous avons étendu les critères de fixation pour le problème (QP), ce qui permet, dans certains cas, de réduire la dimension du problème, voire de le résoudre entièrement en appliquant une boucle de répétition fondée sur ces critères
In this thesis, we presented a new hybrid algorithm (HA) for solving the unconstrained quadratic programming problem (UQP). This algorithm is based on the combination of a block of five special procedures and the simulated annealing method. Our procedures are very efficient and fast, but unfortunately, they sometimes get stuck in a local minimum. To overcome this drawback, we combined them with a simulated annealing algorithm. Then, we repeated these procedures several times to obtain the best solution using our hybrid algorithm.We noticed that the gap between the solution found by (HA) and the CPLEX software is very small, which implies the efficiency of our strategy. Moreover, we integrated our hybrid method into a semi-definite relaxation problem of (UQP) within a branch and bound strategy. To facilitate the resolution of (UQP), we suggest applying fixing criteria to reduce the size of the problem and speed up the process of obtaining an exact solution. The quality of the lower bound found by our code (QPTOSDP) is very good, but the execution time increases with the size of the problem. Numerical results prove the accuracy of our optimal solution and the efficiency and robustness of our approach.We extended the fixing criteria to the quadratic programming problem (QP), which in some cases allows reducing the dimension of the problem, or even solving it entirely by applying a repetition loop based on these criteria
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

CIRILLO, GIOVANNI AMEDEO. „Engineering quantum computing technologies: from compact modelling to applications“. Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2971119.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Tavares, Gabriel. „New algorithms for Quadratic Unconstrained Binary Optimization (QUBO) with applications in engineering and social sciences“. 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.000051095.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Gomes, Cláudio Filipe Prata. „Portfolio Optimization in Financial Markets using Quantum Computing: An Experimental Study“. Master's thesis, 2021. http://hdl.handle.net/10316/96124.

Der volle Inhalt der Quelle
Annotation:
Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia
A computação quântica está prestes a mudar o mundo tal como o conhecemos. Através da exploração das propriedades da teoria quântica para fins computacionais, é esperada uma redução substancial na quantidade de problemas que hoje são considerados intratáveis. Isto significa que os computadores quânticos têm a capacidade de devolver soluções para alguns problemas de interesse prático para os quais um computador clássico não consegue devolver, pelo menos em tempo útil. Isto é ainda mais revolucionário e notável pelo facto de que esses problemas abrangem domínios multidisciplinares como Química, Medicina e, mais relevante no contexto desta dissertação, Finanças.Neste trabalho, vamos focar-nos na utilização da computação quântica para abordar um problema relevante e atual no domínio financeiro. Mais especificamente, um problema de otimização combinatorial, o problema de otimização de portfólios, que consiste em selecionar o melhor portfólio financeiro (combinação de ativos) entre um conjunto de todos os portfólios possíveis, de acordo com uma certa função objetivo, comummente de forma a maximizar o retorno esperado ou minimizar o risco. Devido ao grande número de parâmetros, como o retorno esperado por ativo e as condições de mercado, este problema atinge uma complexidade exponencial e é um problema NP-hard, intratável no contexto da computação clássica.Nós desenvolvemos um estudo empírico acerca da influência dos parâmetros nas soluções devolvidas por um computador quântico para o problema de otimização de portfólios. Em particular, utilizamos um computador quântico da D-Wave e variamos os parâmetros relacionados não só com o computador quântico, mas também com o problema de otimização de portfólios. Acreditamos que as conclusões do estudo são contribuições úteis para qualquer investigador que deseje utilizar computadores quânticos adiabáticos no contexto do problema de otimização de portfólios e também noutros domínios de aplicação.As nossas descobertas sugerem que os parâmetros têm efeito nos resultados, quer sejam relacionados com o problema de otimização de portfólios ou com o computador quântico. Além disso, também descobrimos que alguns dos parâmetros têm um grande impacto, tal como o chain strength, que define a força com a qual os qubits que representam uma variável estão correlacionados, e que outros não têm nenhum efeito estatisticamente significativo, tais como o anneal schedule ou o embedding.
Quantum computing is bound to change the world as we know it. By exploring the properties of quantum theory for computational purposes, it is expected to substantially reduce the amount of problems that are nowadays considered computationally intractable. This means that quantum computers have the power of providing solutions for some of the problems of practical interest for which a classical computer cannot, at least in a timely manner. This is even more revolutionary and remarkable given the fact these problems range from multidisciplinary domains such as Chemistry, Medicine, and, most relevant in the context of this dissertation, Finance.In this work, we will focus on leveraging quantum computing to addressing a relevant and timely problem within the financial domain. We will target a combinatorial optimization problem, the portfolio optimization problem, which consists of selecting the best portfolio (combination of assets) among all possible portfolios, according to some objective function, whether to maximize return or minimize risk. Due to the high number of parameters, such as the expected return per asset and market conditions, this problem attains an exponential complexity and is an NP-hard problem, intractable in the context of classical computing.We designed and conducted an empirical study on the effect of parameters on solutions to the portfolio optimization problem given by a quantum computer. In particular, we use a quantum computer from D-Wave and vary the parameters related to not only the quantum computer, but also to the portfolio optimization problem itself. We believe that our findings are useful not only for those using adiabatic quantum computers in the context of portfolio optimization problem, and also in other application domains.Our findings suggest that the parameters do have an effect on the results, whether they are related to the portfolio optimization problem or to the quantum computer. Moreover, we found that some of the parameters have a great impact, such as the chain strength, which defines the strength associated to the couplings between qubits that represent a variable, and that other parameters have no statistically significant effect, such as the anneal schedule or embedding used.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Silva, Pedro Miguel Dias da. „Quantum Computing for Optimizing Power Flow in Energy Grids“. Master's thesis, 2021. http://hdl.handle.net/10316/98073.

Der volle Inhalt der Quelle
Annotation:
Dissertação de Mestrado em Engenharia Informática apresentada à Faculdade de Ciências e Tecnologia
Quantum Computing is beginning to gather even more attention at a time where efforts are being made into familiarizing younger audiences into not only learning programming on a classical computer, but also on a quantum one.This new paradigm of computation is set to revolutionize several industries as the hardware keeps developing, with the potential to solve problems that a classical computer would consider intangible, as well as giving some specific problems a so sought after speed-up. This is done by applying the properties of quantum physics, like superposition and entanglement, for computation. These properties not only allow to process a larger amount of data simultaneously, but also allows to tackle problems in a completely different way that would not be possible in a classical computer.This thesis focuses on solving a known and relevant problem in the electrical industry and studying its application on a quantum environment. The Unit Commitment Problem, the problem in question, consists in minimizing the cost of power production, for a certain time horizon, by scheduling different generating units in order to meet a certain demand given by a valid forecast. Given that this is an NP-hard problem, it quickly becomes intractable on classical computers when considering real world scenarios on a large scale.A test scenario was also designed to study, by conducting an experimental analysis, the influences that each of the parameters have on the solution quality. To that end, the formulation of the Unit Commitment Problem was also translated to a suitable QUBO form which is then solved through a quantum annealer from D-Wave. For that test scenario, both the parameters from the problem formulation as well as the parameters related to the quantum computer were considered.The results from the experimental analysis suggest that most parameters do have an impact on the solution quality. With some having a greater impact overall such as Grids, that are representing how accurate the linearization of the problem is, as well the delta value associated with the first constraint, a value that is tied to how much of a weight the first constraint, that restricts each unit to a single production level, has. While the parameters with the overall greater impact are tied to the formulation of the problem, parameters like chain strength that affects the strength of coupling between qubits representing a single variable also have a significant impact on the solution quality. While most parameters have a statistical impact on the solution quality, the delta associated with the second constraint, that restricts power generation to equal the demand, fails to have an impact.
Quantum Computing is beginning to gather even more attention at a time where efforts are being made into familiarizing younger audiences into not only learning programming on a classical computer, but also on a quantum one.This new paradigm of computation is set to revolutionize several industries as the hardware keeps developing, with the potential to solve problems that a classical computer would consider intangible, as well as giving some specific problems a so sought after speed-up. This is done by applying the properties of quantum physics, like superposition and entanglement, for computation. These properties not only allow to process a larger amount of data simultaneously, but also allows to tackle problems in a completely different way that would not be possible in a classical computer.This thesis focuses on solving a known and relevant problem in the electrical industry and studying its application on a quantum environment. The Unit Commitment Problem, the problem in question, consists in minimizing the cost of power production, for a certain time horizon, by scheduling different generating units in order to meet a certain demand given by a valid forecast. Given that this is an NP-hard problem, it quickly becomes intractable on classical computers when considering real world scenarios on a large scale.A test scenario was also designed to study, by conducting an experimental analysis, the influences that each of the parameters have on the solution quality. To that end, the formulation of the Unit Commitment Problem was also translated to a suitable QUBO form which is then solved through a quantum annealer from D-Wave. For that test scenario, both the parameters from the problem formulation as well as the parameters related to the quantum computer were considered.The results from the experimental analysis suggest that most parameters do have an impact on the solution quality. With some having a greater impact overall such as Grids, that are representing how accurate the linearization of the problem is, as well the delta value associated with the first constraint, a value that is tied to how much of a weight the first constraint, that restricts each unit to a single production level, has. While the parameters with the overall greater impact are tied to the formulation of the problem, parameters like chain strength that affects the strength of coupling between qubits representing a single variable also have a significant impact on the solution quality. While most parameters have a statistical impact on the solution quality, the delta associated with the second constraint, that restricts power generation to equal the demand, fails to have an impact.
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Unconstrained binary quadratic"

1

Punnen, Abraham P., Hrsg. The Quadratic Unconstrained Binary Optimization Problem. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications. Springer International Publishing AG, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Quadratic Unconstrained Binary Optimization Problem: Theory, Algorithms, and Applications. Springer International Publishing AG, 2022.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Unconstrained binary quadratic"

1

Kochenberger, Gary A., Fred Glover und Haibo Wang. „Binary Unconstrained Quadratic Optimization Problem“. In Handbook of Combinatorial Optimization, 533–57. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-7997-1_15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Punnen, Abraham P. „Introduction to QUBO“. In The Quadratic Unconstrained Binary Optimization Problem, 1–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Çela, Eranda, und Abraham P. Punnen. „Complexity and Polynomially Solvable Special Cases of QUBO“. In The Quadratic Unconstrained Binary Optimization Problem, 57–95. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Punnen, Abraham P., und Renata Sotirov. „Mathematical Programming Models and Exact Algorithms“. In The Quadratic Unconstrained Binary Optimization Problem, 139–85. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_6.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Letchford, Adam N. „The Boolean Quadric Polytope“. In The Quadratic Unconstrained Binary Optimization Problem, 97–120. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Wang, Yang, und Jin-Kao Hao. „Metaheuristic Algorithms“. In The Quadratic Unconstrained Binary Optimization Problem, 241–59. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_9.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Boros, Endre. „Autarkies and Persistencies for QUBO“. In The Quadratic Unconstrained Binary Optimization Problem, 121–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_5.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Woods, Brad D., Gary Kochenberger und Abraham P. Punnen. „QUBO Software“. In The Quadratic Unconstrained Binary Optimization Problem, 301–11. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Natarajan, Karthik. „The Random QUBO“. In The Quadratic Unconstrained Binary Optimization Problem, 187–206. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_7.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Punnen, Abraham P. „The Bipartite QUBO“. In The Quadratic Unconstrained Binary Optimization Problem, 261–300. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-04520-2_10.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Unconstrained binary quadratic"

1

Iftakher, Ashfaq, und M. M. Faruque Hasan. „Exploring Quantum Optimization for Computer-aided Molecular and Process Design“. In Foundations of Computer-Aided Process Design, 292–99. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.143809.

Der volle Inhalt der Quelle
Annotation:
Computer-aided Molecular and Process Design (CAMPD) is an equation-oriented multi-scale decision making framework for designing both materials (molecules) and processes for separation, reaction, and reactive separation whenever material choice significantly impacts process performance. The inherent nonlinearity and nonconvexity in CAMPD optimization models, introduced through the property and process models, pose challenges to state-of-the-art solvers. Recently, quantum computing (QC) has shown promise for solving complex optimization problems, especially those involving discrete decisions. This motivates us to explore the potential usage of quantum optimization techniques for solving CAMPD problems. We have developed a technique for directly solving a class of mixed integer nonlinear programs using QC. Our approach represents both continuous and integer design decisions by a set of binary variables through encoding schemes. This transformation allows to reformulate certain types of CAMPD problems into Quadratic Unconstrained Binary Optimization (QUBO) models that can be directly solved using quantum annealing techniques. We illustrate this technique for the selection of optimal ionic liquids (IL) and the configuration of a reactor-separator process network. We also discuss several challenges that are associated with quantum optimization when solving large scale CAMPD problems.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

De Souza, Murilo Zangari, und Aurora Trinidad Ramirez Pozo. „Multiobjective Binary ACO for Unconstrained Binary Quadratic Programming“. In 2015 Brazilian Conference on Intelligent Systems (BRACIS). IEEE, 2015. http://dx.doi.org/10.1109/bracis.2015.15.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Baioletti, Marco. „Probabilistic reasoning as quadratic unconstrained binary optimization“. In GECCO '22: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3520304.3534005.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Lin, Geng. „Solving unconstrained binary quadratic programming using binary particle swarm optimization“. In 2013 International Conference of Information Technology and Industrial Engineering. Southampton, UK: WIT Press, 2013. http://dx.doi.org/10.2495/itie130311.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Liu Liu, Qiuling Xie und Chunli Liu. „Sufficient optimal conditions for unconstrained quadratic binary problems“. In 12th International Symposium on Operations Research and its Applications in Engineering, Technology and Management (ISORA 2015). Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/cp.2015.0623.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Alom, Md Zahangir, Brian Van Essen, Adam T. Moody, David Peter Widemann und Tarek M. Taha. „Quadratic Unconstrained Binary Optimization (QUBO) on neuromorphic computing system“. In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7966350.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Borgulya, Istvan. „A parallel evolutionary algorithm for unconstrained binary quadratic problems“. In the 10th annual conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1389095.1389213.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Fang, Yan, und Ashwin Sanjay Lele. „Solving Quadratic Unconstrained Binary Optimization with Collaborative Spiking Neural Networks“. In 2022 IEEE International Conference on Rebooting Computing (ICRC). IEEE, 2022. http://dx.doi.org/10.1109/icrc57508.2022.00021.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Gabor, Thomas, Marian Lingsch Rosenfeld, Claudia Linnhoff-Popien und Sebastian Feld. „How to Approximate any Objective Function via Quadratic Unconstrained Binary Optimization“. In 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). IEEE, 2022. http://dx.doi.org/10.1109/saner53432.2022.00149.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Pauckert, Justin, Matthieu Parizy und Mayowa Ayodele. „Strategic Solution Combination in Scatter Search for Quadratic Unconstrained Binary Optimization“. In 14th International Conference on Evolutionary Computation Theory and Applications. SCITEPRESS - Science and Technology Publications, 2022. http://dx.doi.org/10.5220/0011547600003332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie