Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Uncertain imputation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Uncertain imputation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Uncertain imputation"
G.V., Suresh, und Srinivasa Reddy E.V. „Uncertain Data Analysis with Regularized XGBoost“. Webology 19, Nr. 1 (20.01.2022): 3722–40. http://dx.doi.org/10.14704/web/v19i1/web19245.
Der volle Inhalt der QuelleWang, Jianwei, Ying Zhang, Kai Wang, Xuemin Lin und Wenjie Zhang. „Missing Data Imputation with Uncertainty-Driven Network“. Proceedings of the ACM on Management of Data 2, Nr. 3 (29.05.2024): 1–25. http://dx.doi.org/10.1145/3654920.
Der volle Inhalt der QuelleElimam, Rayane, Nicolas Sutton-Charani, Stéphane Perrey und Jacky Montmain. „Uncertain imputation for time-series forecasting: Application to COVID-19 daily mortality prediction“. PLOS Digital Health 1, Nr. 10 (25.10.2022): e0000115. http://dx.doi.org/10.1371/journal.pdig.0000115.
Der volle Inhalt der QuelleLiang, Pei, Junhua Hu, Yongmei Liu und Xiaohong Chen. „Public resources allocation using an uncertain cooperative game among vulnerable groups“. Kybernetes 48, Nr. 8 (02.09.2019): 1606–25. http://dx.doi.org/10.1108/k-03-2018-0146.
Der volle Inhalt der QuelleBleidorn, Michel Trarbach, Wanderson de Paula Pinto, Isamara Maria Schmidt, Antonio Sergio Ferreira Mendonça und José Antonio Tosta dos Reis. „Methodological approaches for imputing missing data into monthly flows series“. Ambiente e Agua - An Interdisciplinary Journal of Applied Science 17, Nr. 2 (05.04.2022): 1–27. http://dx.doi.org/10.4136/ambi-agua.2795.
Der volle Inhalt der QuelleGromova, Ekaterina, Anastasiya Malakhova und Arsen Palestini. „Payoff Distribution in a Multi-Company Extraction Game with Uncertain Duration“. Mathematics 6, Nr. 9 (11.09.2018): 165. http://dx.doi.org/10.3390/math6090165.
Der volle Inhalt der QuelleLee, Jung Yeon, Myeong-Kyu Kim und Wonkuk Kim. „Robust Linear Trend Test for Low-Coverage Next-Generation Sequence Data Controlling for Covariates“. Mathematics 8, Nr. 2 (08.02.2020): 217. http://dx.doi.org/10.3390/math8020217.
Der volle Inhalt der QuelleGriffin, James M., Jino Mathew, Antal Gasparics, Gábor Vértesy, Inge Uytdenhouwen, Rachid Chaouadi und Michael E. Fitzpatrick. „Machine-Learning Approach to Determine Surface Quality on a Reactor Pressure Vessel (RPV) Steel“. Applied Sciences 12, Nr. 8 (07.04.2022): 3721. http://dx.doi.org/10.3390/app12083721.
Der volle Inhalt der QuelleFLÅM, S. D., und Y. M. ERMOLIEV. „Investment, uncertainty, and production games“. Environment and Development Economics 14, Nr. 1 (Februar 2009): 51–66. http://dx.doi.org/10.1017/s1355770x08004579.
Der volle Inhalt der QuelleLe, H., S. Batterman, K. Dombrowski, R. Wahl, J. Wirth, E. Wasilevich und M. Depa. „A Comparison of Multiple Imputation and Optimal Estimation for Missing and Uncertain Urban Air Toxics Data“. Epidemiology 17, Suppl (November 2006): S242. http://dx.doi.org/10.1097/00001648-200611001-00624.
Der volle Inhalt der QuelleDissertationen zum Thema "Uncertain imputation"
Elimam, Rayane. „Apprentissage automatique pour la prédiction de performances : du sport à la santé“. Electronic Thesis or Diss., IMT Mines Alès, 2024. https://theses.hal.science/tel-04805708.
Der volle Inhalt der QuelleNumerous performance indicators exist in sport and health (recovery, rehabilitation, etc.), allowing us to characterize different sporting and therapeutic criteria.These different types of performance generally depend on the workload (or rehabilitation) undergone by athletes or patients.In recent years, many applications of machine learning to sport and health have been proposed.Predicting or even explaining performance based on workload data could help optimize training or therapy.In this context, the management of missing data and the articulation between load types and the various performance indicators considered represent the 2 issues addressed in this manuscript through 4 applications. The first 2 concern the management of missing data through uncertain modeling performed on (i) highly incomplete professional soccer data and (ii) artificially noisy COVID-19 data. For these 2 contributions, we have combined credibilistic uncertainty models, based on the theory of belief functions, with various imputation methods adapted to the chronological context of training/matches and therapies.Once the missing data had been imputed in the form of belief functions, the credibilistic $k$ nearest-neighbor model adapted to regression was used to take advantage of the uncertain uncertainty patterns associated with the missing data. In the context of predicting performance in handball matches as a function of past workloads, multi-output regression models are used to simultaneously predict 7 athletic and technical performance indicators. The final application concerns the rehabilitation of post-stroke patients who have partially lost the use of one arm. In order to detect patients not responding to therapy, the problem of predicting different rehabilitation criteria has enabled the various contributions of this manuscript (credibilistic imputation of missing data and multiscore regression for the simultaneous prediction of different performance indicators
Bodine, Andrew James. „The Effect of Item Parameter Uncertainty on Test Reliability“. The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1343316705.
Der volle Inhalt der QuelleHuang, Shiping. „Exploratory visualization of data with variable quality“. Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-01115-225546/.
Der volle Inhalt der QuelleBücher zum Thema "Uncertain imputation"
Analysis of Integrated Data. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenChambers, Raymond L., und Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenChambers, Raymond L., und Lichun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2021.
Den vollen Inhalt der Quelle findenChambers, Raymond L., und Li-Chun Zhang. Analysis of Integrated Data. Taylor & Francis Group, 2019.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Uncertain imputation"
Little, Roderick J. A., und Donald B. Rubin. „Estimation of Imputation Uncertainty“. In Statistical Analysis with Missing Data, 75–93. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781119013563.ch5.
Der volle Inhalt der QuelleRanvier, Thomas, Haytham Elghazel, Emmanuel Coquery und Khalid Benabdeslem. „Accounting for Imputation Uncertainty During Neural Network Training“. In Big Data Analytics and Knowledge Discovery, 265–80. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-39831-5_24.
Der volle Inhalt der QuelleShi, Xingjie, Can Yang und Jin Liu. „Using Collaborative Mixed Models to Account for Imputation Uncertainty in Transcriptome-Wide Association Studies“. In Methods in Molecular Biology, 93–103. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-0947-7_7.
Der volle Inhalt der QuelleErdogan Erten, Gamze, Camilla Zacche da Silva und Jeff Boisvert. „Decorrelation and Imputation Methods for Multivariate Modeling“. In Applied Spatiotemporal Data Analytics and Machine Learning [Working Title]. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.115069.
Der volle Inhalt der QuelleLajeunesse, Marc J. „Recovering Missing or Partial Data from Studies: a Survey of Conversions and Imputations for Meta-analysis“. In Handbook of Meta-analysis in Ecology and Evolution. Princeton University Press, 2013. http://dx.doi.org/10.23943/princeton/9780691137285.003.0013.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Uncertain imputation"
Mai, Lihao, Haoran Li und Yang Weng. „Data Imputation with Uncertainty Using Stochastic Physics-Informed Learning“. In 2024 IEEE Power & Energy Society General Meeting (PESGM), 1–5. IEEE, 2024. http://dx.doi.org/10.1109/pesgm51994.2024.10688419.
Der volle Inhalt der QuelleZhang, Shunyang, Senzhang Wang, Xianzhen Tan, Renzhi Wang, Ruochen Liu, Jian Zhang und Jianxin Wang. „SaSDim:Self-Adaptive Noise Scaling Diffusion Model for Spatial Time Series Imputation“. In Thirty-Third International Joint Conference on Artificial Intelligence {IJCAI-24}. California: International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/ijcai.2024/283.
Der volle Inhalt der QuelleAzarkhail, M., und P. Woytowitz. „Uncertainty management in model-based imputation for missing data“. In 2013 Annual Reliability and Maintainability Symposium (RAMS). IEEE, 2013. http://dx.doi.org/10.1109/rams.2013.6517697.
Der volle Inhalt der QuelleZhao, Qilong, Yifei Zhang, Mengdan Zhu, Siyi Gu, Yuyang Gao, Xiaofeng Yang und Liang Zhao. „DUE: Dynamic Uncertainty-Aware Explanation Supervision via 3D Imputation“. In KDD '24: The 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 6335–43. New York, NY, USA: ACM, 2024. http://dx.doi.org/10.1145/3637528.3671641.
Der volle Inhalt der QuelleJun, Eunji, Ahmad Wisnu Mulyadi und Heung-Il Suk. „Stochastic Imputation and Uncertainty-Aware Attention to EHR for Mortality Prediction“. In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852132.
Der volle Inhalt der QuelleSaeidi, Rahim, und Paavo Alku. „Accounting for uncertainty of i-vectors in speaker recognition using uncertainty propagation and modified imputation“. In Interspeech 2015. ISCA: ISCA, 2015. http://dx.doi.org/10.21437/interspeech.2015-703.
Der volle Inhalt der QuelleHwang, Sunghyun, und Dong-Kyu Chae. „An Uncertainty-Aware Imputation Framework for Alleviating the Sparsity Problem in Collaborative Filtering“. In CIKM '22: The 31st ACM International Conference on Information and Knowledge Management. New York, NY, USA: ACM, 2022. http://dx.doi.org/10.1145/3511808.3557236.
Der volle Inhalt der QuelleAndrews, Mark, Gavin Jones, Brian Leyde, Lie Xiong, Max Xu und Peter Chien. „A Statistical Imputation Method for Handling Missing Values in Generalized Polynomial Chaos Expansions“. In ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/gt2019-91035.
Der volle Inhalt der QuelleMoreira, Rafael Peralta, Thiago da Silva Piedade und Marcelo Victor Tomaz De Matos. „Credibility Assessment of Annular Casing Cement for P&A Campaigns: A Case Study in Campos Basin Offshore Brazil“. In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32625-ms.
Der volle Inhalt der QuelleWang, Zepu, Dingyi Zhuang, Yankai Li, Jinhua Zhao, Peng Sun, Shenhao Wang und Yulin Hu. „ST-GIN: An Uncertainty Quantification Approach in Traffic Data Imputation with Spatio-Temporal Graph Attention and Bidirectional Recurrent United Neural Networks“. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). IEEE, 2023. http://dx.doi.org/10.1109/itsc57777.2023.10422526.
Der volle Inhalt der Quelle