Dissertationen zum Thema „Ultrafast Pulse“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Ultrafast Pulse" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Chauhan, Vikrant Chauhan Kumar. „Pulse compression and dispersion control in ultrafast optics“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/37153.
Der volle Inhalt der QuelleLiu, Xuan. „Numerical Simulations of Ultrafast Pulse Measurements“. Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16175.
Der volle Inhalt der QuelleWang, Feihu. „Ultrafast terahertz pulse generation from quantum cascade lasers“. Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066752.
Der volle Inhalt der QuelleTHz quantum cascade lasers (QCLs) are foundational semiconductor devices for laser action in the THz range. Considerable developments have been made in the last decade in terms of temperature operation and high output power. THz QCLs can also possess extremely large spectral bandwidths, rendering them suitable for ultrashort THz pulse generation through modelocking, with pulse widths of a few picoseconds theoretically obtainable. However, to date, the generation of THz pulses from QCLs has been limited to 10 - 20 ps, despite several years of research effort. In this thesis, this bottleneck in QCL technology is investigated and overcome. Several milestones have been achieved that permitted the realization of ultrashort pulse generation from QCLs. Current state-of-the-art performances are shown, using narrow spectral bandwidth QCLs in single-plasmon waveguides, and where modelocking results in 20 ps long THz pulses at low temperatures (10K). This is followed by, for the first time, mode-locking of broad spectral bandwidth QCLs in sub-wavelength metal-metal waveguides at ‘high’ temperatures (77K). Even with large spectral bandwidths, the shortest pulses achieved were only 11 ps and we show that the index dispersion and the electrical modulation are the critical factors. Finally, these effects are compensated through a Gires-Tournois interferometer and an extra loss mechanism, respectively, integrated monolithically onto a QCL. This approach permits to generate pulses as short as 4 ps, with the potential to go considerably further to the sub-picosecond or single cycle regime
Lee, Dongjoo. „Ultra-broadband phase-matching ultrashort-laser-pulse measurement techniques“. Diss., Available online, Georgia Institute of Technology, 2007, 2007. http://etd.gatech.edu/theses/available/etd-07032007-113912/.
Der volle Inhalt der QuelleFirst, Phillip, Committee Member ; Adibi, Ali, Committee Member ; Raman, Chandra, Committee Member ; Buck, John, Committee Member ; Trebino, Rick, Committee Chair.
Ma, Jun. „Ultrafast Electron Transfer in Solutions Studied by Picosecond Pulse Radiolysis“. Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS023/document.
Der volle Inhalt der QuelleThe interaction of energetic particles with water results in the excitation and ionization of water molecules. The ionization process refers to the generation of the excess electrons detached from their parent molecules and leaving behind the positive hole (denoted as H₂O•⁺). This occurs on the timescale of an electronic transition ~10⁻¹⁵ s. The earliest chemical processes of H₂O•⁺ and excess electron towards other matter followed water ionizing in bulk still remain relative little known and constitute a challenging subject in radiation chemistry. In my thesis, picosecond pulse radiolysis techniques were used to observe the kinetics of the SO₄•⁻, H₂PO₄• in highly concentrated sulfuric acid and phosphoric acid solutions over a large range of concentrations (from 1 mol L⁻¹ to neat acid). The experimental results showed clearly that the secondary radical of sulfuric (SO₄•⁻) and phosphoric acid (H₂PO₄•) can be formed via two mechanisms: direct electron detachment by the electron pulse (7 ps) and ultrafast electron transfer from the solutes to the radical cation of water H₂O•⁺. The reactivity of the strongest oxidizing species, H₂O•⁺ towards the solutes in highly concentrated aqueous solutions is quantitatively demonstrated
Lamour, Tobias Paul. „High pulse energy near-infrared ultrafast optical parametric oscillators“. Thesis, Heriot-Watt University, 2011. http://hdl.handle.net/10399/2509.
Der volle Inhalt der QuelleShimotsuma, Yasuhiko. „Nano-modification of transparent materials using ultrafast pulse laser“. 京都大学 (Kyoto University), 2005. http://hdl.handle.net/2433/144535.
Der volle Inhalt der QuelleBenane, Mehdi Yanis. „Ultrafast, broadband and multi-pulse transmissions for ultrasonic imaging“. Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1268/document.
Der volle Inhalt der QuelleUltrasound imaging is a diagnostic tool widely used thanks to such virtues as real-time data acquisition / processing, ease of use and safety for the patient / practitioner during examination. However, when compared to other imaging methods such as X-ray tomography and Magnetic Resonance Imaging, the echography has the disadvantage to provide relatively low image quality. In this thesis, we study a method that is able to increase the ultrasound image quality, thus paving the way towards improved diagnostics based on echography and novel ultrasound applications. In order to increase the echo signal to noise ratio of the received signals, we propose to use linear frequency modulated signals, also called chirps. To avoid the negative effect of the bandlimited acquisition probe, we apply a pre-enhancement step on the probe excitation signals in order to boost the signal energy in the frequency bands where the probe is less efficient. To compress the echo energy in reception, we use Wiener filters that allow obtaining a good trade-off between the spatial resolution and noise stability. We apply the previously detailed pipeline, also called REC (Resolution Enhancement Technique) on ultrafast imaging schemes. We show promising results in simulation and in-vitro, ex-vivo, in-vivo acquisitions. Furthermore, we adapt REC in such way that the frequency dependent tissue attenuation effect is compensated for. This improvement is validated in simulation and phantom experiments. We also adapt REC to the nonlinear propagation of ultrasound waves, by proposing a pulse inversion technique that uses REC to provide a better image resolution and contrast to noise ratio. Then, we demonstrate the generality of the REC method by applying it to different acquisition schemes such as diverging wave compounding and Multi Line Transmit (MLT). We also show that the image quality can be increased more by taking into account the spatial impulse response of the ultrasound probe when REC and MLT are combined
Akturk, Selcuk. „Extending ultrashort-laser-pulse measurement techniques to new dimensions, time scales, and frequencies“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6892.
Der volle Inhalt der QuelleTimilsina, Pratap. „Development of an electron time of flight spectrometer for ultrafast pulse characterization and ultrafast dynamics studies“. Kansas State University, 2016. http://hdl.handle.net/2097/32598.
Der volle Inhalt der QuelleDepartment of Physics
Carlos Trallero
This report presents the details of an electron time-of-flight (ETOF) spectrometer to be used for characterizing ultrafast electric field pulses. The pulses will range in pulse-duration from femtosecond to attoseconds and in wavelength from the far infrared (FIR) to the extreme ultra violet (XUV). By measuring the photoelectrons in the presence of two electric fields and their quantum interference we will be able to extract the amplitude and phase of the electric field. For XUV pulses this is the well-known streaking and Reconstruction of Attosecond Beating by Interference of Two-Photon Transition (RABITT) method. The ETOF is based on a set of tunable electrostatic lenses capable of detecting 0-150 eV electrons. In addition, we can selectively increase the photoelectron yield of the spectrum. The precise tuning of the electrostatic lens system is done with a Genetic Algorithm (GA) with an intensity fluctuation discriminator in the fitness.
Kassier, Gunther Horst. „Ultrafast electron diffraction : source development, diffractometer design and pulse characterisation“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5359.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Ultrafast Electron Diffraction (UED) is a rapidly maturing field which allows investigation of the evolution of atomic arrangement in solids on timescales comparable to the vibrational period of their constituent atoms (~10-13 s). The technique is an amalgamation of conventional high energy electron diffraction methods and pump-probe spectroscopy with femtosecond (1 fs = 10-15 s) laser pulses. Ultrafast pulsed electron sources generally suffer from limitations on the attainable electron number per pulse (brightness) due to Coulomb repulsion among the electrons. In this dissertation, the design and construction of a compact UED source capable of delivering sub-300 fs electron pulses suitable for diffraction experiments and containing about 5000 electrons per shot is described. The setup has been characterised by measurement of the transverse beam size and angular spread, and through recording and analyzing an electron diffraction pattern from a titanium foil. Measurement of the temporal duration of fs electron pulses is not trivial, and a specialised compact streak camera operating in accumulation mode has been developed as part of this study. A sub-200 fs temporal resolution has been achieved, and the dependence of temporal duration on electron number per pulse was investigated for the current UED source. The observed trends correlate well with detailed electron bunch simulations. In order to investigate ultrafast processes on samples that cannot be probed repeatedly, it becomes necessary to significantly increase the brightness of current state of the art compact sources such as the one constructed in the present study. UED sources employing electron pulse compression techniques offer this possibility. Traditional pulse compression schemes based on RF cavities, while simple in principle, pose significant technical challenges in their realisation. The current thesis describes two novel UED pulse compression methods developed by the author: achromatic reflectron compression and pulsed cavity compression. Both concepts are expected to be easier to realise than conventional RF compression. Detailed simulations predict that such sources can attain a brightness improvement of more than one order of magnitude over compact sources that do not employ compression techniques. In addition, such sources show much promise for the attainment of pulse durations in the sub-100 fs range.
AFRIKAANSE OPSOMMING: Ultra vinnige elektron diffraksie is ‘n meettegniek wat tans in die proses is om vinnige ontwikkeling te ondergaan. Die tegniek het ten doel om strukturele omsettingsprosesse op ‘n lengteskaal van atoombindings en ‘n tydskaal van die vibrasie periode van atome in materie, ongeveer 10-13 s, te ondersoek. Dit word bewerkstellig deur die spasieresolusievermoë van gewone hoë energie elektron diffraksie met die tydresolusievermoë van femtosekonde (1 fs = 10-15 s) laserspektroskopie te kombineer. Die aantal elektrone per puls (intensiteit) van ultravinnige gepulsde elektronbronne word beperk deur die Coulomb afstootingskragte tussen die elektrone. Hierdie dissertasie beskryf die ontwerp en konstruksie van ‘n kompakte ultravinnige elektron bron. Die elektronpulse wat geproduseer word bevat tot 5000 elektrone per puls met ‘n tyd durasie van minder as 300 fs, en is geskik vir diffraksie eksperimente. Die aparaat is gekarakteriseer deur die volgende metings: elektronpulsdiameter, straaldivergensie, en ‘n titaan foelie se statiese diffraksie patroon. Dit is nie triviaal om die durasie van femtosekonde elektronpulse te meet nie, en n spesiale kompakte akkumulerende “streak camera” is vir die doeleindes van hierdie projek onwikkel. Die tydresolusie van hierdie “streak camera” is beter as 200 fs, en die afhanklikheid van die pulsdurasie wat deur die ultravinnige elektron bron geproduseer word as n funksie van die elektrongetal per puls is met behulp van hierdie toestel bepaal. Die resultate klop redelik goed met gedetaileerde simulasies van die elektron puls dinamika. Die karakterisasie van monsters wat nie herhaaldelik gemeet kan word nie vereis verkieslik ‘n nog hoër pulsintensiteit as wat met huidige bronne bereik kan word. ‘N verdere doelstelling is dus om ultravinnige elektron bronne te ontwikkel wat pulse met meer elektrone per puls kan genereer. Dit kan bewerkstellig word deur bronne wat van elektron puls kompressie tegnieke gebruik maak. Die tradisionele manier waarop dít gedoen word is deur middel van n kontinu gedrewe radio frekwensie holte. Hierdie metode gaan egter gepaard met aanmerklik hoë tegniese uitdagings. Om hierdie rede het die outeur twee alternatiewe puls kompressie konsepte ontwikkel: akromatiese reflektron kompressie and gepulsde holte kompressie. Albei konsepte sal waarskeinlik makliker wees om te realiseer as die tradisionele radio frekwensie kompressie, en is deur middel van gedetaileerde simulasies geverifiseer. Hierdie simulasies voorspel dat die intensiteit van genoemde bronne met ten minste n grooteorde meer kan wees as wat tans met kompakte ultravinnige elektron bronne moontlik is. Verder blyk dit dat sulke bronne n pulsdurasie van minder as 100 fs kan bereik.
Miura, Kiyotaka. „Studies on Modification of Glass Structure Using Ultrafast Pulse Laser“. 京都大学 (Kyoto University), 2003. http://hdl.handle.net/2433/77753.
Der volle Inhalt der QuelleSavage, Shelby Jay 1978. „All-optical pulse regeneration in a Faraday stabilized ultrafast nonlinear interferometer“. Thesis, Massachusetts Institute of Technology, 2001. http://hdl.handle.net/1721.1/86730.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 105-110).
by Shelby Jay Savage.
M.Eng.
Friedman, Melissa E. „Pulse shaping for broadband photoassociation of cold molecules“. Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:18d49cc2-9146-4ff8-b3b3-9e045bff039c.
Der volle Inhalt der QuelleNguyen, Dat. „Dynamic feedback pulse shaping for high power chirped pulse amplification system“. Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5826.
Der volle Inhalt der QuellePh.D.
Doctorate
Physics
Sciences
Physics
Kim, Daekeun Ph D. Massachusetts Institute of Technology. „Ultrafast optical pulse manipulation in three dimensional-resolved microscope imaging and microfabrication“. Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/49759.
Der volle Inhalt der QuelleIncludes bibliographical references.
The availability of lasers with femtosecond, ultrafast light pulses provides new opportunities and challenges in instrument design. This thesis addresses three aspects of utilizing ultrafast light pulses in two-photon excitation microscopy. First, optical fibers are routinely used in many optical instruments but their use in two-photon microscopy is very limited. As ultrafast light pulses propagate through conventional fiber optics, light pulses are dispersed and broadened, as a result of nonlinear interactions between light and material. Two-photon excitation efficiency is reduced with pulse broadening. The recent development of photonic crystal fibers allows unprecedented control of light properties through them. This thesis provides a thorough quantitative characterization of different conventional optical fibers and photonic crystal fibers enabling better utilization of these fibers for two-photon microscopic imaging. Second, two-photon microscopic imaging is relatively slow due to the sequential nature of raster scanning. Several groups have recently sought to overcome this limitation by developing a 3D-resolved wide-field two-photon microscope using the concept of temporal focusing that is based on manipulating the dispersion of ultrafast light pulses spatially. However, the existing temporal focusing systems have poor optical sectioning capability and, due to a shortage of illumination power, low actual frame rate. In this thesis, a comprehensive mathematical model is derived for temporal focusing two-photon microscope taking key instrument design parameters into account.
(cont.) By optimizing instrument design and the use of high two-photon cross section quantum dots, we demonstrate single quantum dot imaging at micron level resolution at video rate. Lastly, we realize that the temporal focus concept may also be used for microfabrication. A prototype three-dimensional lithographic microfabrication system is developed and micro patterning capability based on photobleaching process is demonstrated.
by Daekeun Kim.
Ph.D.
Stoian, Razvan. „Adaptive techniques for ultrafast laser material processing“. Habilitation à diriger des recherches, Université Jean Monnet - Saint-Etienne, 2008. http://tel.archives-ouvertes.fr/tel-00352662.
Der volle Inhalt der QuelleGalbraith, Martin Christopher Edward [Verfasser]. „Time-resolved spectroscopy with attosecond pulses and pulse trains: ultrafast relaxation in benzene cations / Martin Christopher Edward Galbraith“. Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1124465170/34.
Der volle Inhalt der QuelleVaughan, Joshua Charles. „Two-dimensional ultrafast pulse shaping and its application to coherent control and spectroscopy“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/32492.
Der volle Inhalt der QuelleVita.
Includes bibliographical references (p. 167-182).
This thesis develops powerful new methods for shaping femtosecond laser pulses in two dimensions and explores their application to coherent control of propagating lattice excitations and degenerate four-wave mixing spectroscopy. Pulse shaping in two dimensions is achieved by manipulating the spectral components of ultrashort laser pulses within many horizontal slices of the pulse. Each horizontal slice is independently shaped by means of a two-dimensional liquid crystal spatial light modulator, and taken together the shaped regions form sophisticated optical waveforms with time-dependent spatial profiles. Automated optical control over coherent lattice responses that are both time- and position-dependent across macroscopic length scales is demonstrated. Two- dimensional (2D) femtosecond pulse shaping was used to generate excitation light fields that were directed toward distinct regions of crystalline samples, producing terahertz-frequency lattice vibrational waves that emanated outward from their multiple origins at lightlike speeds. Interferences among the waves resulted in fully specified far-field responses, including tilted, focusing, or amplified wavefronts. Generation and coherent amplification of terahertz travelling waves and terahertz phased-array generation are also demonstrated. A novel approach to coherent nonlinear optical spectroscopy based on 2D femtosecond pulse shaping is introduced. Multiple phase-stable output beams are created and overlapped at the sample in a phase-matched boxcars geometry via 2D femtosecond pulse shaping.
(cont.) The pulse timing, shape, phase, and spectral content within all beams may be specified, yielding an unprecedented level of control over the interacting fields in nonlinear spectroscopic experiments. Heterodyne detection and phase cycling of the nonlinear signal is easily implemented due to the excellent phase stability between each output beam. This approach combines the waveform generation capabilities of magnetic resonance spectroscopy with the wavevector specification and phase-matching of nonlinear optical spectroscopy, yielding the signal selectivity and control capabilities of both. Results on three prototype systems will be used to illustrate the exciting possibilities with this method.
by Joshua Charles Vaughan.
Ph.D.
Harper, Matthew R. „Control and measurement of ultrafast pulses for pump/probe-based metrology“. Thesis, St Andrews, 2007. http://hdl.handle.net/10023/430.
Der volle Inhalt der QuelleBalasubramanian, Haribhaskar. „Two photon luminescence from quantum dots using broad and narrowband ultrafast laser pulses“. [College Station, Tex. : Texas A&M University, 2007. http://hdl.handle.net/1969.1/ETD-TAMU-2020.
Der volle Inhalt der QuelleGanz, Thomas. „Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy“. Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-148551.
Der volle Inhalt der QuelleKhanolkar, Ankita Nayankumar. „Effect of Spectral Filtering on Pulse Dynamics of Ultrafast Fiber Oscillators at Normal Dispersion“. University of Dayton / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1628171764933755.
Der volle Inhalt der QuelleGhimire, Shambhu. „Study on generation of attosecond pulse with polarization gating“. Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/283.
Der volle Inhalt der QuelleWu, Yi. „High flux isolated attosecond pulse generation“. Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/6038.
Der volle Inhalt der QuellePh.D.
Doctorate
Optics and Photonics
Optics and Photonics
Optics
Yang, Chang. „Ultra-Compact Grating-Based Monolithic Optical Pulse Compressor for Laser Amplifier Systems“. Research Showcase @ CMU, 2016. http://repository.cmu.edu/dissertations/731.
Der volle Inhalt der QuelleCiesielski, Richard [Verfasser], und Achim [Akademischer Betreuer] Hartschuh. „Ultrafast dynamics in single nanostructures investigated by pulse shaping microscopy / Richard Ciesielski. Betreuer: Achim Hartschuh“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2016. http://d-nb.info/1111505330/34.
Der volle Inhalt der QuellePatel, Aabid. „Phenomena of ultrafast laser material modification with respect to spatio-temporal couplings of the laser pulse“. Thesis, University of Southampton, 2016. https://eprints.soton.ac.uk/415994/.
Der volle Inhalt der QuelleMacpherson, James. „Characterisation and Optimization of Ultrashort Laser Pulses“. Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1237.
Der volle Inhalt der QuelleZang, Yimin. „Simulation of the Optical Loop Mirror in Ultrafast Fiber Lasers“. University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1523377900786586.
Der volle Inhalt der QuelleRützel, Stefan [Verfasser], Tobias [Gutachter] Brixner und Bernd [Gutachter] Engels. „Pulse-Sequence Approaches for Multidimensional Electronic Spectroscopy of Ultrafast Photochemistry / Stefan Rützel. Gutachter: Tobias Brixner ; Bernd Engels“. Würzburg : Universität Würzburg, 2014. http://d-nb.info/1102826197/34.
Der volle Inhalt der QuelleFischer, Jonathan [Verfasser]. „Ultrafast Yb:YAG thin-disk amplifier with multi-millijoule pulse energy for high-power frequency conversion / Jonathan Fischer“. Konstanz : Bibliothek der Universität Konstanz, 2016. http://d-nb.info/1114894672/34.
Der volle Inhalt der QuelleHyyti, Janne Juhani. „Ultrafast Nonlinear Nano-Optics via Collinear Characterization of Few-Cycle Pulses“. Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19410.
Der volle Inhalt der QuelleThe ultrashort laser pulse characterization method “interferometric frequency-resolved optical gating” (iFROG) is extended. Both second- and third harmonic generation (SHG and THG) are separately employed as the optical nonlinearity. An iFROG measurement represents an inverse problem, where the electric field amplitude and phase of the underlying laser pulse can only be reconstructed by an iterative algorithm. In this work, a mathematical formalism for both the SHG and THG variants of iFROG is developed and combined with an evolutionary optimization algorithm to create a novel pulse retrieval algorithm for iFROG. While iFROG was originally conceived solely for pulse characterization, the technique can equally well be applied for spectroscopic purposes. By replacing the nonlinear medium in iFROG with an object of study, say a nanostructure, and characterizing a known pulse again such that the sample affects the harmonic generation process, the response of the object can be deciphered with sub-femtosecond precision. As no previous solution for the THG variant exists, the presented retrieval algorithm allows iFROG to be exploited in the study of ultrafast third-order nonlinear effects for the first time. The spectroscopic capability of iFROG is put to test by studying three differing physical systems, each consisting of nanostructures resting on dielectric substrates. Subjecting these specimen to few-cycle near-infrared pulses, a rich variety of nonlinear optical phenomena is observed. In ZnO nanorods, the power dependence of multiphoton-absorption induced luminescence is measured and found to be connected to a localization of the optical near-field. A three-photon resonance in a thin film of titania and a localized surface plasmon resonance in Au nanoantennas both lead to a finite lifetime of the induced material polarization. The THG-iFROG method is harnessed to measure the ultrafast temporal dynamics of these systems at the nanometer and few-femtosecond scales.
Bubelnik, Matthew. „THE EFFECTS OF ELECTRODE GEOMETRY ON CURRENT PULSE CAUSED BY ELECTRICAL DISCHARGE OVER AN ULTRA-FAST LASER FILAMENT“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3695.
Der volle Inhalt der QuelleM.S.
Other
Optics and Photonics
Optics
Resan, Bojan. „DISPERSION-MANAGED BREATHING-MODE SEMICONDUCTOR MODE-LOCKED RING LASER“. Doctoral diss., University of Central Florida, 2004. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2907.
Der volle Inhalt der QuellePh.D.
Other
Optics and Photonics
Optics
Bücker, Kerstin. „Characterization of pico- and nanosecond electron pulses in ultrafast transmission electron microscopy“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE014/document.
Der volle Inhalt der QuelleThis thesis presents a study of ultrashort electron pulses by using the new ultrafast transmission electron microscope (UTEM) in Strasbourg. The first part focuses on the stroboscopic operation mode which works with trains of picosecond multi-electron pulses in order to study ultrafast, reversible processes. A detailed parametric study was carried out, revealing fundamental principles of electron pulse dynamics. New mechanisms were unveiled which define the pulse characteristics. These are trajectory effects, limiting the temporal resolution, and chromatic filtering, which acts on the energy distribution and signal intensity. Guidelines can be given for optimum operation conditions adapted to different experimental requirements. The second part starts with the setup of the single-shot operation mode, based on intense nanosecond electron pulses for the investigation of irreversible processes. Having the first ns-UTEM equipped with an electron energy loss spectrometer, the influence of chromatic aberration was studied and found to be a major limitation in imaging. It has to be traded off with spherical aberration and signal intensity. For the first time, the feasibility of core-loss EELS with one unique ns-electron pulse is demonstrated. This opens a new field of time-resolved experiments
Bodnar, Nathan. „Phase-locking Stability of a Quasi-single-cycle Pulse“. Master's thesis, University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5606.
Der volle Inhalt der QuelleM.S.
Masters
Optics and Photonics
Optics and Photonics
Optics; International
Ganz, Thomas [Verfasser], und Ferenc [Akademischer Betreuer] Krausz. „Supercontinuum generation by chirped pulse compression for ultrafast spectroscopy and broadband near-field microscopy / Thomas Ganz. Betreuer: Ferenc Krausz“. München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2011. http://d-nb.info/102665355X/34.
Der volle Inhalt der QuelleAbend, Stefan. „Ultrafast dynamics of chlorins and porphyrins in proteins and solution investigated by time resolved three pulse photon echo spectroscopy“. Thesis, Imperial College London, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.249371.
Der volle Inhalt der QuelleBowlan, Pamela. „Measuring the spatiotemporal electric“. Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/28188.
Der volle Inhalt der QuelleCommittee Chair: Rick Trebino; Committee Member: Jennifer Curtis; Committee Member: John Buck; Committee Member: Mike Chapman; Committee Member: Stephen Ralph.
Wang, Bingxia. „Second harmonic generation in disordered nonlinear crystals : application to ultra-short laser pulse characterization“. Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/461570.
Der volle Inhalt der QuelleEsta tesis doctoral es un estudio de la generación de segundo armónico en cristales no lineales compuestos por dominios ferroeléctricos que alternan el signo de la non linealidad de segundo orden y distribuidos de una forma aleatoria (como por ejemplo niobato de estroncio y bario o niobato de calcio y bario). Como primera aplicación proponemos una técnica de caracterización de pulsos laser ultracortos, cuyo principio de operación está relacionado con la manera singular en la que este tipo de cristal emite la señal de segundo armónico en una dirección transversal a la dirección de propagación del pulso a medir. Utilizando esta señal no lineal podemos determinar la duración del pulso, el parámetro de chirp y el perfil temporal en una configuración de single-shot. Hemos implementado este método en dos configuraciones distintas -auto correlación y correlación cruzada- para la medida de pulsos con duraciones entre 10 fs y 1 ps. Este método, en comparación con otros métodos tradicionales para la caracterización de pulsos ultracortos, permite obtener el ajuste de fase (phase matching) de forma automática sobre un rango espectral muy amplio, sin necesidad de aliñamiento crítico ni ajuste de temperatura, elimina el requisito de utilizar cristales delgados y tiene un proceso de operación más sencillo. Se han medido diferentes tipos de pulsos y se han explorado las limitaciones de la técnica. Como este trabajo se basa en las propiedades específicas de la emisión de segundo armónico en los cristales no lineales con distribución aleatoria de dominios, un objetivo importante ha sido la caracterización del tamaño y la distribución de los dominios ferroelectricos y su relación con la distribución angular específica del segundo armónico generado. La distribución espacial de los dominios implica una distribución correspondiente de vectores en la red recíproca que puede compensar el ajuste de fase en la interacción no lineal. Cualquier cambio en la distribución de dominios tendrá pues un impacto directo en la intensidad y distribución angular de la señal de segundo armónico generado. Basándolos en estos conceptos, demostramos un método óptico non destructivo indirecto para la caracterización estadística de los dominios no lineales basado en el análisis de la intensidad y la distribución angular del segundo armónico generado. Implementamos este método experimental en la caracterización de cristales con diferentes tipos de dominios. Para un estudio más detallado hemos desarrollado un modelo numérico basado en el método de "split-step fast-Fourier transform beam propagation" que simula el proceso no lineal observado experimentalmente. Demostramos que el análisis de la dependencia angular del segundo armónico puede aportar información relevante sobre estructuras con distribuciones complejas de dominios. Este método se puede utilizar para la monitorización en tiempo real de distribuciones desconocidas en el mismo proceso de crecimiento o del poling del cristal ferroelectrico.
Ce projet de thèse de doctorat est intitulé « Génération du second harmonique dans des cristaux non-linéaires désordonnés: application pour la caractérisation d'impulsions laser ultra-courtes ». Il est consacré à l'étude de la génération de deuxième harmonique dans des cristaux ferroélectriques non linéaires formés par une distribution aléatoire de domaines. Ceci conduit à une distribution aléatoire de la susceptibilité non linéaire quadratique (Tels que le nitrate de baryum de strontium –SBN- et les cristaux de nitrate de calcium et de calcium) et son application à la caractérisation unique des impulsions laser ultra-courtes. Le principe de base de l'opération est lié au type unique d'émission associé à ces types de cristaux où le second signal harmonique est émis transversalement à la direction de propagation du faisceau. En utilisant la génération transversale de deuxième harmonique à partir de ces cristaux, nous mesurons la durée de l'impulsion, le paramètre chirp et le profil temporel dans une configuration à un seul pulse laser. Cette méthode a été mise en oeuvre à la fois dans l'autocorrélation transversale et les schémas transversaux de corrélation croisée pour la mesure des impulsions avec des durées allant de plusieurs dizaines à plusieurs centaines de femtosecondes. Les principaux avantages obtenus avec les techniques développées par rapport à d'autres méthodes traditionnelles comprennent l'élimination de l'exigence de cristaux minces non linéaires pour la génération harmonique, la possibilité d'obtenir une correspondance automatique de phase sans alignement angulaire ou contrôle de la température sur un spectre très large et un processus d'opération simplifié. Différents types d'impulsions ont été mesurés dans différentes conditions et les limites de validité de la technique ont été explorées. Étant donné que ce travail repose fortement sur les caractéristiques de l'émission du second signal harmonique par ces cristaux ferroélectriques à distribution aléatoire des domaines, une partie importante de ce travail a été axée sur la caractérisation de la distribution des domaines des cristaux ferroélectriques non linéaires aléatoires et sa relation avec l'émission angulaire du signal de la deuxième harmonique. La distribution de la polarisation non linéaire implique une distribution associée de vecteurs de réseau réciproque, ce qui peut compenser le décalage de phase dans l'interaction non linéaire. Toute modification de la répartition des domaines aurait un impact direct dans la distribution angulaire de la deuxième harmonique et de sa distribution angulaire d'intensité. Sur la base de ces concepts fondamentaux, nous démontrons une méthode optique non destructive indirecte pour la caractérisation de statistiques des domaines non linéaire basées sur l'analyse de la distribution angulaire d'intensité de génération de la deuxième harmonique. Cette méthode a été mise en oeuvre expérimentalement et testée dans des cristaux avec différents types de distributions. Pour obtenir une meilleure compréhension de ces processus, des simulations numériques ont été effectuées en utilisant une méthode de propagation de faisceau adaptée aux matériaux non linéaires. Il a été démontré que l'analyse de la dépendance de l'émission angulaire de la deuxième génération harmonique avec la longueur d'onde fondamentale du faisceau peut être utilisée pour obtenir des informations pertinentes sur les structures de domaines compliquées. Cette méthode pourrait être utilisée pour la surveillance en temps réel de la distribution de domaines inconnue pendant le processus de polling ou de croissance des cristaux.
Walker, Stephen. „Development and Characterization of a Regeneratively Amplified Ultrafast Laser System with an All-Glass Stretcher and Compressor“. Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/2981.
Der volle Inhalt der QuelleHilbert, Vinzenz [Verfasser], Eckart Gutachter] Förster, Georg [Gutachter] [Pretzler und Thomas [Gutachter] Wilhein. „XUV diagnostics tailored to resolve short-pulse-laserdriven ultrafast plasma dynamics / Vinzenz Johannes Hilbert ; Gutachter: Eckart Förster, Georg Pretzler, Thomas Wilhein“. Jena : Friedrich-Schiller-Universität Jena, 2017. http://d-nb.info/1177600129/34.
Der volle Inhalt der QuelleSchönenberger, Norbert [Verfasser], Peter [Akademischer Betreuer] Hommelhoff und Philip [Gutachter] Russell. „Control of free electrons with ultrafast laser pulses:Generation of attosecond electron pulse trains / Norbert Schönenberger ; Gutachter: Philip Russell ; Betreuer: Peter Hommelhoff“. Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2021. http://d-nb.info/1239898436/34.
Der volle Inhalt der QuelleStibenz, Gero. „Neue Methoden der Charakterisierung und Kompression intensiver ultrakurzer optischer Impulse“. Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2008. http://dx.doi.org/10.18452/15995.
Der volle Inhalt der QuelleOne challenge of today’s laser physics is the stable compression of more and more intense laser pulses to the shortest possible pulse duration to enable new high-field laser experiments and to investigate fast atomic or molecular dynamics. At present, the shortest laser pulses of the visible spectral region envelop only a few cycles of the electric field. The state of the art method to generate such short pulses behind a Ti:sapphire amplifier laser system is by means of successive steps of spectral broadening inside a gas-filled hollow fibre and dispersion compensation. However, a reliable pulse characterization is as important as the pulse compression. The more spectral bandwidth the pulse covers the more technically challenging is the measurement of the pulse’s electric field structure. In this work, new concepts of compression and characterization of pulses down to durations below 10 fs are demonstrated as well as further optimization of established techniques. Due to modern, chirped-mirror based dispersion compensation pulses as short as 3.8 fs were generated with a two-stage hollow fibre compressor. At present, these are the shortest pulses of the visible spectral region, compressed without adaptive means for dispersion compensation. For the first time the effect of self-compression of mJ-pulses to below 8 fs in a self-guiding noble gas filament is demonstrated experimentally and determined by numerical simulations. Advanced pulse characterization schemes were needed for a phase-sensitive investigation of dispersion compensation and pulse compression of white light pulses. An optimized design of the SPIDER (Spectral Phase Interferometry for Direct Electric-field Reconstruction) technique is demonstrated that facilitates the measurement of the pulse’s spectral phase in case of broadband structured spectra. With the implementation of an interferometric FROG (Frequency-Resolved Optical Gating) a new phase-sensitive pulse characterization method is introduced.
Budkina, Darya S. „Ultrafast photophysical and photochemical dynamics of polyhalogenated alkanes, cycloalkanes, and transition metal complexes“. Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1553686775405944.
Der volle Inhalt der QuelleKim, Kyungbum. „ALL-SEMICONDUCTOR HIGH POWER MODE-LOCKED LASER SYSTEM“. Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2482.
Der volle Inhalt der QuellePh.D.
Optics and Photonics
Optics
Fang, Li. „Development of ultrafast saturable absorber mirrors for applications to ultrahigh speed optical signal processing and to ultrashort laser pulse generation at 1.55 µm“. Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112313/document.
Der volle Inhalt der QuelleIn this thesis, we focus on the development of ultrafast saturable absorber mirrors for applications to ultra-high speed optical signal processing and ultrashort laser pulse generation at 1.55 μm. In the first part, we have developed an ultrafast In₀.₅₃Ga₀.₄₇As -based semiconductor saturable absorber mirror by heavy ion implantation at the elevated temperature of 300 ºC. Fe ion has been employed as the implant since it has been shown that Fe²⁺/Fe³⁺ level can act as efficient recombination centers for electrons and holes in In₀.₅₃Ga₀.₄₇As. We studied the carrier lifetime of Fe-implanted sample as a function of ion dose, temperature and annealing time. Apart from the fast carrier lifetime, the characteristics of nonlinear reflectivity for the Fe-implanted sample, such as linear absorption, modulation depth, nonsaturable loss, have are also been investigated under different annealing temperature. Under annealing at 600 ºC for 15 s, the Fe-implanted sample with a big modulation depth of 53.9 % and a fast carrier lifetime of 2 ps has been achieved. In the second part, focused ion beam milling has been applied to fabricate an ultra-thin taper structure on crystalline indium phosphide to realize a multi-wavelength vertical cavity photonic device. The appropriate FIB scanning procedures and operating parameters were used to control the target material re-deposition and to minimize the surface roughness of the milled area. The sputtering yield of crystalline indium phosphide target was determined by investigating the relationship between milling depth and ion dose. By applying the optimal experimentally obtained yield and related dose range, we have fabricated an ultra-thin taper structure whose etch depths are precisely and progressively tapered from 25 nm to 55 nm, with a horizontal slope of about 1:13000. The optical characterization of this tapered device confirms the expected multi-wavelength behavior of our device and shows that the optical losses induced by the FIB milling process are negligible. In the third part, we demonstrate that the nonlinear optical response of graphene is resonantly enhanced by incorporating monolayer graphene into a vertical microcavity with a top mirror. A thin Si₃N₄ layer was deposited by a developed PECVD process to act as a protective layer before subsequent top mirror deposition, which allowed preserving the optical properties of graphene. Combining monolayer graphene with a microcavity, a modulation depth of 14.9 % was achieved at an input energy fluence of 108 µJ/cm². This modulation depth is much higher than the value of about 2 % in other works. At the same time, an ultrafast recovery time of 0.7 ps is retained
Smit, Albert Bart. „A new femtosecond electron diffractometer for structural dynamics experiments at cryogenic temperatures“. Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/96015.
Der volle Inhalt der QuelleENGLISH ABSTRACT: In this thesis, a femtosecond electron diffraction (FED) set-up that is capable of investigating the photo-induced switching of Cu(DCNQI)2 from being an insulator to being a conductor is presented. Movies of atomic structural changes with temporal resolution within the typical photo-switching transition timescales (sub-picoseconds) are obtainable with this set-up by employing a femtosecond laser. The experimental technique and the design of a crucial instrument of the machine, the electron gun, are extensively described and characterised both numerically and experimentally. The interest in observing atomic structural changes of Cu(DCNQI)2 in real time is because of the rich variety of the radical salts available that show alloy-specific Charge Density Wave (CDW) transitions. Valuable insights about the driving mechanisms behind these structural changes that are responsible for a change in conductivity are obtainable, as well as the relation between crystal alloys and their transition characteristics. Electron diffraction patterns of crystals in their metallic phase (room temperature) are shown in this thesis, but diffraction patterns of cryo-cooled Cu(DCNQI)2 in its insulating phase are still to be acquired. The temporal resolution of the atomic movie can be improved by recompression of electron pulses that are debunched due to Coulomb repulsion and electron energy spread within a pulse. Numerical and preliminary experimental results presented in this work expose the potential of a simple compression technique. In this way, more electrons in a single electron pulse can be afforded which allows to perform experiments at shorter integration time or lower repetition rate.
AFRIKAANSE OPSOMMING: In hierdie tesis word ’n femtosekonde elektron diffraksie opstelling aangebied wat daartoe in staat is om die foto-geïnduseerde omskakeling in Cu(DCNQI)2 van nie-geleier tot geleier te ondersoek. Deur gebruik te maak van ’n femtosekonde laser in hierdie opstelling, is ’rolprente’ van strukturele veranderinge op atoomskaal met ’n tyd resolusie beter as die tipiese foto-omskakelings tydskaal (sub-pikosekonde) verkrygbaar. Die eksperimentele tegniek en die ontwerp van ’n noodsaaklike instrument van die masjien, die elektron geweer, word breedvoerig beskryf en numeries en eksperimenteel gekenmerk. Die belangstelling om strukturele veranderinge in Cu(DCNQI)2 op atoom skaal in reële tyd waar te kan neem is as gevolg van die ryke verskeidenheid van radikale soute, wat allooispesifieke ladings digtheid golf (CDW) oorgange toon, wat beskikbaar is. Waardevolle insigte oor die meganismes wat hierdie strukturele veranderinge wat ’n verandering in geleiding veroorsaak dryf is verkrygbaar, sowel as die verwantskap tussen die kristal allooi en die oorgang kenmerke. Diffraksie patrone van kristalle in die metaalagtige fase (kamer temperatuur) word in hierdie tesis getoon, maar diffraksie patrone van cryo-verkoelde Cu(DCNQI)2 in die niegeleier fase moet nog verkry word. Die tyd resolusie van die atomiese rolprent kan verbeter word deur die elektron puls — wat deur Coulomb afstoting en elektron energie spreiding versprei is — weer saam te pers. Numeriese en voorlopige eksperimentele resultate toon die potensiaal van ’n eenvoudige kompressie tegniek. Hierdeur kan meer elektrone in ’n elektron puls gegun word en so die integrasie tyd of die herhalingstempo van die eksperimente verkort kan word.
Eickemeyer, Felix. „Ultrafast dynamics of coherent intersubband polarizations in quantum wells and quantum cascade laser structures“. Doctoral thesis, [S.l.] : [s.n.], 2002. http://dochost.rz.hu-berlin.de/dissertationen/eickemeyer-felix-2002-07-03.
Der volle Inhalt der Quelle