Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ultrafast current“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ultrafast current" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ultrafast current"
Lu Wen-Tian, Yao Chun-Wei, YAN Zhi und YUAN Zhe. „Ultrafast Spin Dynamics Research on Laser-Induced Spin Valve Structures“. Acta Physica Sinica 74, Nr. 6 (2025): 0. https://doi.org/10.7498/aps.74.20241744.
Der volle Inhalt der QuelleSotome, M., M. Nakamura, J. Fujioka, M. Ogino, Y. Kaneko, T. Morimoto, Y. Zhang et al. „Spectral dynamics of shift current in ferroelectric semiconductor SbSI“. Proceedings of the National Academy of Sciences 116, Nr. 6 (22.01.2019): 1929–33. http://dx.doi.org/10.1073/pnas.1802427116.
Der volle Inhalt der QuelleKiemle, Jonas, Philipp Zimmermann, Alexander W. Holleitner und Christoph Kastl. „Light-field and spin-orbit-driven currents in van der Waals materials“. Nanophotonics 9, Nr. 9 (29.06.2020): 2693–708. http://dx.doi.org/10.1515/nanoph-2020-0226.
Der volle Inhalt der QuelleCottrell, W. J., T. G. Ference und K. A. Puzey. „Improved magnetooptic modulator for ultrafast current pulses“. IEEE Photonics Technology Letters 14, Nr. 5 (Mai 2002): 624–26. http://dx.doi.org/10.1109/68.998705.
Der volle Inhalt der QuelleLian, Meng, und Jie Wu. „Ultrafast micropumping by biased alternating current electrokinetics“. Applied Physics Letters 94, Nr. 6 (09.02.2009): 064101. http://dx.doi.org/10.1063/1.3080681.
Der volle Inhalt der QuelleKim, Un-Tae, Myeong-Hun Jo und Hyo-Jin Ahn. „Microgrid-Patterned Ni Foams as Current Collectors for Ultrafast Energy Storage Devices“. Metals 14, Nr. 3 (19.03.2024): 354. http://dx.doi.org/10.3390/met14030354.
Der volle Inhalt der QuelleSobacchi, Emanuele, Tsvi Piran und Luca Comisso. „Ultrafast Variability in AGN Jets: Intermittency and Lighthouse Effect“. Astrophysical Journal Letters 946, Nr. 2 (01.04.2023): L51. http://dx.doi.org/10.3847/2041-8213/acc84d.
Der volle Inhalt der QuelleZymmer, K., und P. Mazurek. „Comparative investigation of SiC and Si power electronic devices operating at high switching frequency“. Bulletin of the Polish Academy of Sciences: Technical Sciences 59, Nr. 4 (01.12.2011): 555–59. http://dx.doi.org/10.2478/v10175-011-0068-0.
Der volle Inhalt der QuelleElezzabi, A. Y., und M. R. Freeman. „Ultrafast magneto‐optic sampling of picosecond current pulses“. Applied Physics Letters 68, Nr. 25 (17.06.1996): 3546–48. http://dx.doi.org/10.1063/1.116632.
Der volle Inhalt der QuelleWagner, Ronald S., Jeffrey M. Bradley, Carl J. Maggiore, Jerome G. Beery und Robert B. Hammond. „An Approach to Measure Ultrafast-Funneling-Current Transients“. IEEE Transactions on Nuclear Science 33, Nr. 6 (1986): 1651–56. http://dx.doi.org/10.1109/tns.1986.4334658.
Der volle Inhalt der QuelleDissertationen zum Thema "Ultrafast current"
Wei, Jiaqi. „Magnetization manipulation induced by spin current and ultrafast laser“. Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0121.
Der volle Inhalt der QuelleMagnetization manipulation is one of the most actively researched topics in the field of spintronics. Different ways of manipulation can trigger magnetization dynamics on different time scales. Among these dynamics, magnetization precession and ultrafast demagnetization have attracted substantial interests. The frequency of magnetization precession is normally in the GHz range corresponding to a period of hundreds of ps, which is the basic mechanism of spin torque nano-oscillators (STNO), a new type of microwave devices which show advantages over conventional voltage-controlled oscillator (VCO) in terms of size, energy consumption and tunable frequency. Ultrafast demagnetization was first observed in Ni which takes places in hundreds of femtoseconds. Triggered by this, All-Optical Switching (AOS) was then demonstrated which is much faster than any torque induced switching, promising for application in the high-speed magnetic memory. Although many studies on these two phenomena have been reported, several issues need to be addressed before they move toward application. STNOs are supposed to be used for amplitude shift keying (ASK) or frequency shift keying (FSK), but the optimal conditions for these two types of microwave modulation are still not well explored. As for AOS, the influence of the laser parameters such as fluence and pulse duration and the material properties such as the composition and the thickness has not been systematically investigated. In this thesis, these two types of magnetization manipulation are studied in detail. Concerning magnetization precession, we demonstrate that a stronger magnetic field allows a wider frequency tuning range while a smaller magnetic field results in a wider amplitude tuning range. Thus, these two scenarios are applicable to FSK and ASK, respectively, providing guidelines for STNO in microwave modulation. In the second study, we demonstrate that AOS depends strongly on pulse characteristic. This was shown by building a magnetization state diagram for GdFeCo and Co/Pt which are two typical materials showing All-Optical Helicity-Independent Switching (AO-HIS) and All-Optical Helicity-Dependent Switching (AO-HDS), respectively. These results allow a better understanding of the fundamental mechanism behind laser-induced magnetization dynamics
Bubelnik, Matthew. „THE EFFECTS OF ELECTRODE GEOMETRY ON CURRENT PULSE CAUSED BY ELECTRICAL DISCHARGE OVER AN ULTRA-FAST LASER FILAMENT“. Master's thesis, University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3695.
Der volle Inhalt der QuelleM.S.
Other
Optics and Photonics
Optics
Mohamad, Haidar Jawad. „Ultrafast optical measurements of spin-polarized electron dynamics in nanostructured magnetic materials“. Thesis, University of Exeter, 2015. http://hdl.handle.net/10871/18425.
Der volle Inhalt der QuelleHurst, Jerome. „Ultrafast spin dynamics in ferromagnetic thin films“. Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAE004/document.
Der volle Inhalt der QuelleIn this thesis we focus on the theoritical description and on the numerical simulation of the charge and spin dynamics in metallic nano-structures. The physics of metallic nano-structures has stimulated a huge amount of scientific interest in the last two decades, both for fundamental research and for potential technological applications. The thesis is divided in two parts. In the first part we use a semiclassical phase-space model to study the ultrafast charge and spin dynamics in thin ferromagnetic films (Nickel). Both itinerant and localized magnetism are taken into account. It is shown that an oscillating spin current can be generated in the film via the application of a femtosecond laser pulse in the visible range. In the second part we focus on the charge dynamics of electrons confined in metallic nano-particles (Gold) or anisotropic wells. We show that such systems can be used for high harmonic generation
Abdul, Hadi Zeinab. „Terahertz emission spectroscopy of multiferroic bismuth ferrite : insights into ultrafast currents and phonon dynamics“. Electronic Thesis or Diss., Le Mans, 2024. http://www.theses.fr/2024LEMA1030.
Der volle Inhalt der QuelleTerahertz (THz) technologies have attracted significant interest in the scientific community due to their unique position in the electromagnetic spectrum, bridging the gap between the microwave and infrared regions. This radiation is non-ionizing and can penetrate various materials without causing damage, making it highly attractive for numerous potential applications. Recent advances in ultrafast laser technology have expanded the exploration of THz radiation into a wide range of exciting technologies. It’s now being used in fields like medicine for new imaging techniques, in spectroscopy for analyzing materials, in information and communication technology for faster data transfer, and even in security, agriculture, quality control and fundamental material science. Consequently, the development of efficient and tunable THz sources has become a major focus within the THz community to expand these applications further, motivating the exploration of new materials and emission mechanisms. In my PhD project, I have explored a promising new THz emitter: the well-known multiferroic material ‘Bismuth Ferrite’ (BiFeO3). This multiferroic material is particularly interesting due to its distinctive multiferroic properties. BiFeO3 exhibits both a large ferroelectric polarization and a antiferromagnetic order at room temperature offering a unique interplay of ferroelectric and magnetic orders and making this material a promising candidate for THz generation. Using a THz emission spectroscopy setup that I constructed, with its electro-optical sampling detection, I examine THz emission from three distinct BiFeO3 samples. First one with in-plane polarization, another with out-of-plane polarization, and a third presenting striped domains with two orientations of polarization. This technique allows for the direct observation and analysis of THz radiation emitted by these samples upon above gap laser excitation. The experimental investigation involves a detailed study of the THz transient signals emitted from the BiFeO3 samples under varying experimental conditions. By varying the pump wavelengths, sample orientations, directions of pump light polarization, and pump power levels, we can explore how these factors influence the THz emission. Following this, we extract the carrier dynamics (ultrafast current) and lattice vibrations (optical phonons) contributions to this THz transient. And finally, by analyzing their response to experimental parameters changes, we can have a deeper understanding of the physical mechanisms contributing to these ultrafast dynamics and THz emission in BiFeO3
Welsh, Gregor H. „Understanding and control of ultrafast currents for terahertz generation“. Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.487861.
Der volle Inhalt der QuelleBarnes, Mark. „Terahertz emission from ultrafast lateral diffusion currents within semiconductor devices“. Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/363127/.
Der volle Inhalt der QuelleRemy, Quentin. „Ultrafast spin dynamics and transport in magnetic metallic heterostructures“. Electronic Thesis or Diss., Université de Lorraine, 2021. http://www.theses.fr/2021LORR0191.
Der volle Inhalt der QuelleThe control of magnetization, and thus spin, at the shortest timescale, is a fundamental subject for the development of faster data storage devices. The capability to encode information with femtosecond laser pulses on magnetic metals such as GdFeCo or MnRuGa within a few picoseconds was a significant step towards the realization of such a technology. However, the reversal of magnetization observed in these materials upon a single laser pulse irradiation, called All Optical Helicity Independent Switching (AO-HIS), is still limited to a small class of ferrimagnetic materials and its physical mechanism is not completely understood.In this work, we study AO-HIS in magnetic thin films composed of a single or two GdFeCo layers with different alloy compositions. We show that these layers generate spin currents that can affect the AO-HIS of these materials. In particular, we can use such spin currents to reverse the magnetization of various ferromagnetic multilayers, with a single femtosecond laser pulse, which would otherwise only demagnetize and never switch. Playing with the GdFeCo alloy concentration and the ferromagnetic multilayer Curie temperature, we can tune the energy required to observe single shot reversal of the ferromagnet. In addition, we show that neither AO-HIS of the GdFeCo layer is actually required nor direct light illumination of the ferromagnetic multilayer. It is then possible to reverse the magnetization of ferromagnets using only ultrashort heat and spin currents which are generated by the partial ultrafast demagnetization of GdFeCo and transported via a thick metallic copper spacer. These experimental results were successfully understood using semiclassical transport equations for electrons, phonons and quantum spins based on exchange of angular momentum between localized and itinerant spins.Finally, we were able to measure the dynamics of the ferromagnetic multilayer magnetization reversal which is shown to happen in less than a picosecond, being the fastest magnetization reversal ever observed. The action of the external spin current is shown to have an ultrafast cooling effect on the spin which is visible at the sub-picosecond timescale and which can enhance the transient magnetization by up to thirty percent. These results are also understood using our model of heat and angular momentum transport
Sternemann, Elmar [Verfasser], Markus [Akademischer Betreuer] Betz und Torsten [Gutachter] Meier. „Ultrafast coherently controlled currents in GaAs: physics and applications / Elmar Sternemann. Betreuer: Markus Betz. Gutachter: Torsten Meier“. Dortmund : Universitätsbibliothek Dortmund, 2015. http://d-nb.info/1110893809/34.
Der volle Inhalt der QuellePaasch-Colberg, Tim [Verfasser], Reinhard [Akademischer Betreuer] Kienberger und Peter A. [Akademischer Betreuer] Feulner. „Ultrafast, optical-field-induced currents in solid-state materials / Tim Paasch-Colberg. Gutachter: Peter A. Feulner ; Reinhard Kienberger. Betreuer: Reinhard Kienberger“. München : Universitätsbibliothek der TU München, 2014. http://d-nb.info/1051078296/34.
Der volle Inhalt der QuelleBücher zum Thema "Ultrafast current"
Eriksson, Olle, Anders Bergman, Lars Bergqvist und Johan Hellsvik. Outlook on Magnetization Dynamics. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198788669.003.0012.
Der volle Inhalt der QuelleBuchteile zum Thema "Ultrafast current"
Bauer, T., A. B. Hummel, J. S. Kolb, H. G. Roskos, Yu A. Kosevich und K. Köhler. „The Hall Current of Coherent Electron Wavepackets“. In Ultrafast Phenomena XIII, 353–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_109.
Der volle Inhalt der QuellePfeiffer, W. „Ultrafast Electrical Voltage and Current Monitors“. In Fast Electrical and Optical Measurements, 145–74. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-017-0445-8_7.
Der volle Inhalt der QuelleKraack, Jan Philip. „Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods“. In Topics in Current Chemistry Collections, 113–205. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-030-02478-9_4.
Der volle Inhalt der QuelleMünzenberg, M. „Spin-wave and spin-current dynamics in ultrafast demagnetization experiments“. In Springer Proceedings in Physics, 86–88. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07743-7_28.
Der volle Inhalt der QuelleBrundage, Bruce H. „What is the current role of ultrafast CT in coronary imaging?“ In Developments in Cardiovascular Medicine, 531–44. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0291-6_40.
Der volle Inhalt der QuelleMahapatra, Susanta. „Quantum Molecular Dynamics on the Conically Intersecting Potential Energy Surfaces: Nonadiabatic Effects and Ultrafast Relaxation“. In Current Developments in Atomic, Molecular, and Chemical Physics with Applications, 121–26. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-0115-2_16.
Der volle Inhalt der QuelleWijesinghe, Philip, und Kishan Dholakia. „Widefield Multiphoton Imaging at Depth with Temporal Focusing“. In Neuromethods, 263–91. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-2764-8_9.
Der volle Inhalt der QuelleAvaria, G., M. Grisham, J. Li, F. G. Tomasel, V. N. Shlyapstsev, M. Busquet, M. Woolston und J. J. Rocca. „Ionization of Xenon to the Nickel-Like Stage and Beyond in Micro-Capillary Plasma Columns Heated by Ultrafast Current Pulses“. In Springer Proceedings in Physics, 147–53. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-19521-6_19.
Der volle Inhalt der QuelleLaman, N., D. Côté, J. E. Sipe und H. M. van Driel. „Femtosecond optically induced rectification, shift and injection currents in GaAs“. In Ultrafast Phenomena XIII, 362–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-642-59319-2_112.
Der volle Inhalt der QuelleYamanishi, M., M. Kurosaki, Y. Osaka und S. Datta. „Ultrafast Control of Quantum Interference Currents by Virtual Charge Polarizations in Biased Quantum Well Structures“. In Ultrafast Phenomena VI, 334–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83644-2_94.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ultrafast current"
Postnikov, D. V., und A. A. Teploukhov. „Modeling Element Redistribution in the Liquid Phase During Ultrafast Solidification Induced by High-Current Electron Beam Exposure“. In 2024 Dynamics of Systems, Mechanisms and Machines (Dynamics), 1–4. IEEE, 2024. https://doi.org/10.1109/dynamics64718.2024.10838695.
Der volle Inhalt der QuelleMlondo, Khanyisani, Mohamed Fayaz Khan und Olanrewaju Lasabi. „Analysis of a Medium Voltage Direct Current Distribution System for Integration of an Electric Vehicle Ultrafast Charging Station: A Case Study“. In 2024 IEEE PES/IAS PowerAfrica, 01–05. IEEE, 2024. https://doi.org/10.1109/powerafrica61624.2024.10759361.
Der volle Inhalt der QuelleKhurgin, Jacob B. „Optically induced DC current in unbiased dielectrics and semiconductors - a straightforward nonlinear optical effect“. In Ultrafast Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ufo.2023.p1.15.
Der volle Inhalt der QuelleFeise, M. W., D. S. Citrin, M. Bieler, G. Hein, K. Pierz, U. Siegner und M. Koch. „Spatially resolved current density dynamics in photoconductive switches“. In Ultrafast Electronics and Optoelectronics. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/ueo.2001.ufa5.
Der volle Inhalt der QuelleBauer, T., A. B. Hummel, J. S. Kolb, H. G. Roskos, Yu A. Kosevich und K. Köhler. „The Hall Current of Coherent Electron Wavepackets“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2002. http://dx.doi.org/10.1364/up.2002.tud3.
Der volle Inhalt der QuelleSorokin, Sergey. „Ultrafast Wire Loading with Multi-Megaampere Current“. In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241993.
Der volle Inhalt der QuelleAmano, T., Y. Kawakami, H. Itoh, T. Aoyama, Y. Imai, K. Ohgushi, Y. Nakamura, H. Kishida, K. Yonemitsu und S. Iwai. „Ultrafast magnetization driven by spiral current in Kitaev spin liquid α-RuCl3“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu2a.2.
Der volle Inhalt der QuelleSato, Shunsuke A., Wenwen Mao und Angel Rubio. „THz-induced nonlinear electric current and high-order harmonic generation in graphene“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/up.2022.tu4a.9.
Der volle Inhalt der QuelleManfredi, Giovanni, Paul-Antoine Hervieux und Jerome Hurst. „Ultrafast spin current generation in ferromagnetic thin films“. In Spintronics XI, herausgegeben von Henri Jaffrès, Henri-Jean Drouhin, Jean-Eric Wegrowe und Manijeh Razeghi. SPIE, 2018. http://dx.doi.org/10.1117/12.2319953.
Der volle Inhalt der QuelleViotti, Anne-Lise, Marcus Seidel, Gunnar Arisholm, Cord L. Arnold, Chen Guo, Ingmar Hartl, Christoph M. Heyl et al. „Compact multi-pass spectral broadening schemes for XUV pulse generation“. In Ultrafast Optics. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/ufo.2023.f3.1.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ultrafast current"
Yang, Xi. Current Status of Developing Ultrafast Mega-electron-volt Electron Microsope. Office of Scientific and Technical Information (OSTI), September 2022. http://dx.doi.org/10.2172/1898598.
Der volle Inhalt der Quelle