Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ultrafast characterisation“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ultrafast characterisation" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ultrafast characterisation"
Chernysheva, Maria, Aleksey Rozhin, Yuri Fedotov, Chengbo Mou, Raz Arif, Sergey M. Kobtsev, Evgeny M. Dianov und Sergei K. Turitsyn. „Carbon nanotubes for ultrafast fibre lasers“. Nanophotonics 6, Nr. 1 (06.01.2017): 1–30. http://dx.doi.org/10.1515/nanoph-2015-0156.
Der volle Inhalt der QuelleNagatsuma, T., K. Iwatsuki, M. Shinagawa, A. Kozen, M. Yaita, K. Suzuki und K. Kato. „Electro-optic characterisation of ultrafast photodetectors using adiabatically compressed soliton pulses“. Electronics Letters 30, Nr. 10 (12.05.1994): 814–16. http://dx.doi.org/10.1049/el:19940433.
Der volle Inhalt der QuelleHu, Xinyu, Rui Pan, Mingyong Cai, Weijian Liu, Xiao Luo, Changhao Chen, Guochen Jiang und Minlin Zhong. „Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration“. Advanced Optical Technologies 9, Nr. 1-2 (25.02.2020): 89–100. http://dx.doi.org/10.1515/aot-2019-0072.
Der volle Inhalt der QuelleTan, T. Y. T., und G. S. H. Yeo. „Advances in Imaging in Prenatal Diagnosis and Fetal Therapy“. Annals of the Academy of Medicine, Singapore 32, Nr. 3 (15.05.2003): 289–93. http://dx.doi.org/10.47102/annals-acadmedsg.v32n3p289.
Der volle Inhalt der QuelleDonis-González, Irwin R., Daniel E. Guyer, Anthony Pease und Frank Barthel. „Internal characterisation of fresh agricultural products using traditional and ultrafast electron beam X-ray computed tomography imaging“. Biosystems Engineering 117 (Januar 2014): 104–13. http://dx.doi.org/10.1016/j.biosystemseng.2013.07.002.
Der volle Inhalt der QuelleBhudolia, Somen K., Goram Gohel, Jayaram Kantipudi, Kah Fai Leong und Robert J. Barsotti. „Ultrasonic Welding of Novel Carbon/Elium® Thermoplastic Composites with Flat and Integrated Energy Directors: Lap Shear Characterisation and Fractographic Investigation“. Materials 13, Nr. 7 (01.04.2020): 1634. http://dx.doi.org/10.3390/ma13071634.
Der volle Inhalt der QuelleLau, Y. M., F. Möller, U. Hampel und M. Schubert. „Ultrafast X-ray tomographic imaging of multiphase flow in bubble columns – Part 2: Characterisation of bubbles in the dense regime“. International Journal of Multiphase Flow 104 (Juli 2018): 272–85. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2018.02.009.
Der volle Inhalt der QuelleJuodkazis, Saulius, Arturas Vailionis, Eugene G. Gamaly, Ludovic Rapp, Vygantas Mizeikis und Andrei V. Rode. „Femtosecond laser-induced confined microexplosion: tool for creation high-pressure phases“. MRS Advances 1, Nr. 17 (30.12.2015): 1149–55. http://dx.doi.org/10.1557/adv.2015.41.
Der volle Inhalt der QuelleCosta, P. M. F. J. „Imaging the stimuli response of nanostructured materials inside a transmission electron microscope: from today’s sub-second recording to ultrafast phenomena“. Microscopy and Microanalysis 19, S4 (August 2013): 93–94. http://dx.doi.org/10.1017/s1431927613001086.
Der volle Inhalt der QuellePeralta, L., E. Mourier, C. Richard, P. Chavette-Palmer, M. Muller, M. Tanter und G. Rus. „117 IN VIVO EVALUATION OF THE CERVICAL STIFFNESS EVOLUTION DURING INDUCED LABOR IN EWES USING ELASTOGRAPHY“. Reproduction, Fertility and Development 27, Nr. 1 (2015): 150. http://dx.doi.org/10.1071/rdv27n1ab117.
Der volle Inhalt der QuelleDissertationen zum Thema "Ultrafast characterisation"
Baynes, Nicholas de Brissac. „Ultrafast characterisation of gallium arsenide devices and nanostructures“. Thesis, University of Cambridge, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.388822.
Der volle Inhalt der QuelleTurnbull, Andrew. „Design and characterisation of ultrafast semiconductor disk lasers“. Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/381283/.
Der volle Inhalt der QuelleHuang, Leilei. „Fabrication and characterisation of ultrafast direct laser written waveguides“. Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:7e40e1ee-fcc3-4797-953d-8be5c7af1334.
Der volle Inhalt der QuelleKassier, Gunther Horst. „Ultrafast electron diffraction : source development, diffractometer design and pulse characterisation“. Thesis, Stellenbosch : University of Stellenbosch, 2010. http://hdl.handle.net/10019.1/5359.
Der volle Inhalt der QuelleENGLISH ABSTRACT: Ultrafast Electron Diffraction (UED) is a rapidly maturing field which allows investigation of the evolution of atomic arrangement in solids on timescales comparable to the vibrational period of their constituent atoms (~10-13 s). The technique is an amalgamation of conventional high energy electron diffraction methods and pump-probe spectroscopy with femtosecond (1 fs = 10-15 s) laser pulses. Ultrafast pulsed electron sources generally suffer from limitations on the attainable electron number per pulse (brightness) due to Coulomb repulsion among the electrons. In this dissertation, the design and construction of a compact UED source capable of delivering sub-300 fs electron pulses suitable for diffraction experiments and containing about 5000 electrons per shot is described. The setup has been characterised by measurement of the transverse beam size and angular spread, and through recording and analyzing an electron diffraction pattern from a titanium foil. Measurement of the temporal duration of fs electron pulses is not trivial, and a specialised compact streak camera operating in accumulation mode has been developed as part of this study. A sub-200 fs temporal resolution has been achieved, and the dependence of temporal duration on electron number per pulse was investigated for the current UED source. The observed trends correlate well with detailed electron bunch simulations. In order to investigate ultrafast processes on samples that cannot be probed repeatedly, it becomes necessary to significantly increase the brightness of current state of the art compact sources such as the one constructed in the present study. UED sources employing electron pulse compression techniques offer this possibility. Traditional pulse compression schemes based on RF cavities, while simple in principle, pose significant technical challenges in their realisation. The current thesis describes two novel UED pulse compression methods developed by the author: achromatic reflectron compression and pulsed cavity compression. Both concepts are expected to be easier to realise than conventional RF compression. Detailed simulations predict that such sources can attain a brightness improvement of more than one order of magnitude over compact sources that do not employ compression techniques. In addition, such sources show much promise for the attainment of pulse durations in the sub-100 fs range.
AFRIKAANSE OPSOMMING: Ultra vinnige elektron diffraksie is ‘n meettegniek wat tans in die proses is om vinnige ontwikkeling te ondergaan. Die tegniek het ten doel om strukturele omsettingsprosesse op ‘n lengteskaal van atoombindings en ‘n tydskaal van die vibrasie periode van atome in materie, ongeveer 10-13 s, te ondersoek. Dit word bewerkstellig deur die spasieresolusievermoë van gewone hoë energie elektron diffraksie met die tydresolusievermoë van femtosekonde (1 fs = 10-15 s) laserspektroskopie te kombineer. Die aantal elektrone per puls (intensiteit) van ultravinnige gepulsde elektronbronne word beperk deur die Coulomb afstootingskragte tussen die elektrone. Hierdie dissertasie beskryf die ontwerp en konstruksie van ‘n kompakte ultravinnige elektron bron. Die elektronpulse wat geproduseer word bevat tot 5000 elektrone per puls met ‘n tyd durasie van minder as 300 fs, en is geskik vir diffraksie eksperimente. Die aparaat is gekarakteriseer deur die volgende metings: elektronpulsdiameter, straaldivergensie, en ‘n titaan foelie se statiese diffraksie patroon. Dit is nie triviaal om die durasie van femtosekonde elektronpulse te meet nie, en n spesiale kompakte akkumulerende “streak camera” is vir die doeleindes van hierdie projek onwikkel. Die tydresolusie van hierdie “streak camera” is beter as 200 fs, en die afhanklikheid van die pulsdurasie wat deur die ultravinnige elektron bron geproduseer word as n funksie van die elektrongetal per puls is met behulp van hierdie toestel bepaal. Die resultate klop redelik goed met gedetaileerde simulasies van die elektron puls dinamika. Die karakterisasie van monsters wat nie herhaaldelik gemeet kan word nie vereis verkieslik ‘n nog hoër pulsintensiteit as wat met huidige bronne bereik kan word. ‘N verdere doelstelling is dus om ultravinnige elektron bronne te ontwikkel wat pulse met meer elektrone per puls kan genereer. Dit kan bewerkstellig word deur bronne wat van elektron puls kompressie tegnieke gebruik maak. Die tradisionele manier waarop dít gedoen word is deur middel van n kontinu gedrewe radio frekwensie holte. Hierdie metode gaan egter gepaard met aanmerklik hoë tegniese uitdagings. Om hierdie rede het die outeur twee alternatiewe puls kompressie konsepte ontwikkel: akromatiese reflektron kompressie and gepulsde holte kompressie. Albei konsepte sal waarskeinlik makliker wees om te realiseer as die tradisionele radio frekwensie kompressie, en is deur middel van gedetaileerde simulasies geverifiseer. Hierdie simulasies voorspel dat die intensiteit van genoemde bronne met ten minste n grooteorde meer kan wees as wat tans met kompakte ultravinnige elektron bronne moontlik is. Verder blyk dit dat sulke bronne n pulsdurasie van minder as 100 fs kan bereik.
Mang, Matthias M. „Interferometric spatio-temporal characterisation of ultrashort light pulses“. Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:163c5374-1466-4c4d-a0f5-c4e66b27e2ac.
Der volle Inhalt der QuelleMacpherson, James. „Characterisation and Optimization of Ultrashort Laser Pulses“. Thesis, University of Waterloo, 2003. http://hdl.handle.net/10012/1237.
Der volle Inhalt der QuelleWriglesworth, Alisdair. „Investigation into C-H activation and characterisation of excited states using ultrafast TRIR spectroscopy“. Thesis, University of Nottingham, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.718861.
Der volle Inhalt der QuelleAbajyan, Pavel. „Génération et contrôle de peignes de fréquences optiques dans les lasers à cascade d'interbande (ICL)“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS024.
Der volle Inhalt der QuelleOptical frequency combs (OFCs) are coherent light sources that emit a broad spectrum of discrete, perfectly spaced modes, each with an absolute frequency measurable with the precision of an atomic clock.OFCs in the mid-infrared (MIR 3-12 μm) have recently become of great interest to molecular spectroscopy by the presence of strong absorption of molecular vibration and rotation modes in the spectroscopic "fingerprint" region. Nevertheless, the operation of the OFC in the crucial mid-infrared region (MWIR 3-6 μm) remains significantly underdeveloped compared to other parts of the MIR.In this work, we present an in-depth experimental study of a new generation of interband cascade laser (ICL) and their potential for OFCs in MWIR. The thesis provides proof of the OFC regime both by high-frequency beatnote spectroscopy (BN), and by the new technique of temporal reconstruction of the ultrafast dynamics of these lasers, this making it possible to "visualize" the control of the type of operation of the OFC in ICL. In particular, was carried out the optoelectrical characterization of a set of ICLs with a range of geometries, with the aim of studying low group delay dispersion (GDD) ICLs at longer wavelengths than those previously studied: an ICL operating at 3.8 μm with a 2-section architecture, ICLs operating at 4.1 μm, and another generation of ICL operating at a wavelength of 4.2 μm designed with a wide spectral gain. OFC regime formation and GDD are linked and important for understanding the fundamental mechanisms of OFC formation. ICLs were studied using optical and electrical BN spectroscopy. Passive mode locking (PML) (or free running) and active mode locking (AML) were demonstrated. For 2-section ICLs, where the ICL is divided into a long part and a short part for a single cavity, the exact effect of the small section on the BN has been explained: allows to (a) control very finely the intracavity GDD, (b) introducing losses and showing that we converge towards PML behavior.This work then feeds into the case of ICLs operating at longer wavelengths in a single section cavity and where the GDD is expected to be less. In the particular case of the ICLs operating at 4.1 μm, we demonstrate a strong optical BN, which can be injection locked by radio frequency (RF) injection at the round trip frequency of the ICL, showing the first-steps of active modelocking. This injection locking was achieved using a simple single-section laser architecture with very low waveguide dispersion, and showing that adapting the ICL waveguide for RF operation is not a fundamental requirement. In the final part of the thesis, we show the implementation of the "Shifted Wave Interference Fourier Transform Spectroscopy" (SWIFTS) technique, used in two different configurations, to reconstruct the laser's temporal intensity profile at ultrafast timescales. This permits to demonstrate the nature of OFC generated in these ICLs. Indeed, we show that the ICL operates in the frequency modulation (FM) regime when free-running and transits towards an amplitude modulation (AM) regime when actively modelocked. Interestingly, we also show that ICLs can generate short pulses of ~6.7 ps in free-running operation, despite FM operation, and highlight the control of the pulse width and peak intensity via RF injection. This permits to compress the free-running pulses by a factor of 2.3 to obtain sub-3 ps pulses.This work constitutes an important step in the creation and control of OFCs in the MWIR region. The prospects are to broaden the spectral bandwidth of ICLs and generate high-power ultrashort pulses in the MWIR and beyond
Buchteile zum Thema "Ultrafast characterisation"
Martinsson, Peter, Jari A. I. Oksanen, Marcus Hilgendorft, Eva Åkesson, Paavo Hynninen und Villy Sundström. „Characterisation of Chlorophyll a and Chlorophyll b Monomers in Various Solvent Environments with Ultrafast Spectroscopy“. In Photosynthesis: Mechanisms and Effects, 457–60. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_109.
Der volle Inhalt der QuelleAmy, Dominique. „Breast Elastography“. In Elastography - Applications in Clinical Medicine [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.102445.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ultrafast characterisation"
Bona, Nicola, Dario Santonico, Saida Machicote und Alessandra Battigelli. „Ultrafast Core Analysis for Tight Gas Reservoirs“. In SPE Reservoir Characterisation and Simulation Conference and Exhibition. Society of Petroleum Engineers, 2019. http://dx.doi.org/10.2118/196648-ms.
Der volle Inhalt der QuelleReid, D. T., P. Loza-AIvarez, C. T. A. Brown, T. Beddard und W. Sibbett. „Complete characterisation of mid-infrared femtosecond pulses using XFROG“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/up.2000.mf28.
Der volle Inhalt der QuelleOgawa, K., J. Allam, J. J. Baumberg, N. de B. Baynes, J. R. A. Cleaver, T. Mishima und I. Ohbu. „Ultrafast characterisation of parasitics in in-plane-gate field-effect transistors“. In Ultrafast Electronics and Optoelectronics. Washington, D.C.: OSA, 1995. http://dx.doi.org/10.1364/ueo.1995.utue10.
Der volle Inhalt der QuelleBeaulieu, Y., R. Normandin, P. van der Meer, F. Chatenoud, A. Delage und B. K. Garside. „Picosecond Optical Time Domain Reflectometer for Optoelectronic IC Device Characterisation“. In International Conference on Ultrafast Phenomena. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/up.1994.md.26.
Der volle Inhalt der QuelleThakur, Siddharatha, Behrooz Semnani, Safieddin Safavi-Naeini und Amir Hamed Majedi. „Experimental Characterisation of the Ultrafast Kerr Nonlinearity in Graphene“. In Nonlinear Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/nlo.2019.ntu4a.28.
Der volle Inhalt der QuelleTan, Howe-Siang, Elmar Schreiber und Warren S. Warren. „The generation, amplification and characterisation of shaped ultrafast laser pulses, tunable in the visible wavelengths“. In International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2000. http://dx.doi.org/10.1364/up.2000.mf41.
Der volle Inhalt der QuelleDichtl, Paul, Sylvain D. Gennaro, Yi Li, Stefan A. Maier und Rupert F. Oulton. „Exploiting the Nonlinear Optical Response of Gold Nanoantennas for ultrafast pulse characterisation“. In Frontiers in Optics. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/fio.2019.jtu3a.47.
Der volle Inhalt der QuelleGennaro, Sylvain D., Yi Li, Stefan A. Maier und Rupert F. Oulton. „Double blind ultrafast pulse characterisation by mixed frequency generation in gold antennas (Conference Presentation)“. In Active Photonic Platforms X, herausgegeben von Ganapathi S. Subramania und Stavroula Foteinopoulou. SPIE, 2018. http://dx.doi.org/10.1117/12.2320736.
Der volle Inhalt der QuelleOulton, Rupert F., Sylvain D. Gennaro, Yi Li und Stefan A. Maier. „Double-blind ultrafast pulse characterisation by mixed frequency generation in gold antennas (Conference Presentation)“. In High Contrast Metastructures VIII, herausgegeben von Connie J. Chang-Hasnain, Weimin Zhou und Andrei Faraon. SPIE, 2019. http://dx.doi.org/10.1117/12.2511463.
Der volle Inhalt der QuelleAms, Martin, Michael J. Withford, Judith M. Dawes und James A. Piper. „Characterisation of waveguides written in bulk materials with femtosecond laser pulses“. In PICALO 2004: 1st Pacific International Conference on Laser Materials Processing, Micro, Nano and Ultrafast Fabrication. Laser Institute of America, 2004. http://dx.doi.org/10.2351/1.5056144.
Der volle Inhalt der Quelle