Zeitschriftenartikel zum Thema „Ultra-Soft Hydrogels“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Ultra-Soft Hydrogels" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Xie, Beixin, Peidong Xu, Liqun Tang, Yongrou Zhang, Kejia Xu, Hong Zhang, Zejia Liu, Licheng Zhou, Yiping Liu und Zhenyu Jiang. „Dynamic Mechanical Properties of Polyvinyl Alcohol Hydrogels Measured by Double-Striker Electromagnetic Driving SHPB System“. International Journal of Applied Mechanics 11, Nr. 02 (März 2019): 1950018. http://dx.doi.org/10.1142/s1758825119500182.
Der volle Inhalt der QuelleXu, Zhenyu, Yongsen Zhou, Baoping Zhang, Chao Zhang, Jianfeng Wang und Zuankai Wang. „Recent Progress on Plant-Inspired Soft Robotics with Hydrogel Building Blocks: Fabrication, Actuation and Application“. Micromachines 12, Nr. 6 (24.05.2021): 608. http://dx.doi.org/10.3390/mi12060608.
Der volle Inhalt der QuelleJuliar, Benjamin A., Jeffrey A. Beamish, Megan E. Busch, David S. Cleveland, Likitha Nimmagadda und Andrew J. Putnam. „Cell-mediated matrix stiffening accompanies capillary morphogenesis in ultra-soft amorphous hydrogels“. Biomaterials 230 (Februar 2020): 119634. http://dx.doi.org/10.1016/j.biomaterials.2019.119634.
Der volle Inhalt der QuelleStrachota, Beata, Adam Strachota, Leana Vratović, Ewa Pavlova, Miroslav Šlouf, Samir Kamel und Věra Cimrová. „Exceptionally Fast Temperature-Responsive, Mechanically Strong and Extensible Monolithic Non-Porous Hydrogels: Poly(N-isopropylacrylamide) Intercalated with Hydroxypropyl Methylcellulose“. Gels 9, Nr. 12 (24.11.2023): 926. http://dx.doi.org/10.3390/gels9120926.
Der volle Inhalt der QuelleSanjuan-Alberte, Paola, Jayasheelan Vaithilingam, Jonathan C. Moore, Ricky D. Wildman, Christopher J. Tuck, Morgan R. Alexander, Richard J. M. Hague und Frankie J. Rawson. „Development of Conductive Gelatine-Methacrylate Inks for Two-Photon Polymerisation“. Polymers 13, Nr. 7 (26.03.2021): 1038. http://dx.doi.org/10.3390/polym13071038.
Der volle Inhalt der QuelleGori, M., S. M. Giannitelli, G. Vadalà, R. Papalia, L. Zollo, A. Rainer und V. Denaro. „A POLY(SBMA) ZWITTERIONIC HYDROGEL COATING OF POLYIMIDE SURFACES TO REDUCE THE FOREIGN BODY REACTION TO INVASIVE NEURAL INTERFACES“. Orthopaedic Proceedings 105-B, SUPP_7 (04.04.2023): 20. http://dx.doi.org/10.1302/1358-992x.2023.7.020.
Der volle Inhalt der QuelleWu, Meng, Jingsi Chen, Yuhao Ma, Bin Yan, Mingfei Pan, Qiongyao Peng, Wenda Wang, Linbo Han, Jifang Liu und Hongbo Zeng. „Ultra elastic, stretchable, self-healing conductive hydrogels with tunable optical properties for highly sensitive soft electronic sensors“. Journal of Materials Chemistry A 8, Nr. 46 (2020): 24718–33. http://dx.doi.org/10.1039/d0ta09735g.
Der volle Inhalt der QuelleFrancis, Lydia, Karin V. Greco, Aldo R. Boccaccini, Judith J. Roether, Nicholas R. English, Honglei Huang, R. Ploeg und Tahera Ansari. „Development of a novel hybrid bioactive hydrogel for future clinical applications“. Journal of Biomaterials Applications 33, Nr. 3 (September 2018): 447–65. http://dx.doi.org/10.1177/0885328218794163.
Der volle Inhalt der QuelleMusgrave, Christopher, Lorcan O’Toole, Tianyu Mao, Qing Li, Min Lai und Fengzhou Fang. „Manufacturing of Soft Contact Lenses Using Reusable and Reliable Cyclic Olefin Copolymer Moulds“. Polymers 14, Nr. 21 (02.11.2022): 4681. http://dx.doi.org/10.3390/polym14214681.
Der volle Inhalt der QuelleRosa, Elisabetta, Enrico Gallo, Teresa Sibillano, Cinzia Giannini, Serena Rizzuti, Eliana Gianolio, Pasqualina Liana Scognamiglio, Giancarlo Morelli, Antonella Accardo und Carlo Diaferia. „Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices“. Gels 8, Nr. 12 (16.12.2022): 831. http://dx.doi.org/10.3390/gels8120831.
Der volle Inhalt der QuelleHaraguchi, Kazutoshi. „Extraordinary Properties and New Functions of Nanocomposite Gels and Soft Nanocomposites with Unique Organic/Inorganic Network Structures“. Advanced Materials Research 680 (April 2013): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.680.65.
Der volle Inhalt der QuelleLi, Shengnan, Hailong Yang, Nannan Zhu, Guoqi Chen, YueYue Miao, Jingxia Zheng, Yang Cong et al. „Biotissue‐Inspired Anisotropic Carbon Fiber Composite Hydrogels for Logic Gates, Integrated Soft Actuators, and Sensors with Ultra‐High Sensitivity (Adv. Funct. Mater. 11/2023)“. Advanced Functional Materials 33, Nr. 11 (März 2023): 2370065. http://dx.doi.org/10.1002/adfm.202370065.
Der volle Inhalt der QuelleMolchanov, V. S., M. A. Efremova, T. Yu Kiseleva und O. E. Philippova. „Injectable ultra-soft hydrogel with natural nanoclay“. Nanosystems: Physics, Chemistry, Mathematics 10, Nr. 1 (27.02.2019): 76–85. http://dx.doi.org/10.17586/2220-8054-2019-10-1-76-85.
Der volle Inhalt der QuelleGuo, Meiling, Yuanpeng Wu, Shishan Xue, Yuanmeng Xia, Xi Yang, Yuris Dzenis, Zhenyu Li, Weiwei Lei, Andrew T. Smith und Luyi Sun. „A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator“. Journal of Materials Chemistry A 7, Nr. 45 (2019): 25969–77. http://dx.doi.org/10.1039/c9ta10183g.
Der volle Inhalt der QuelleWang, Yueyang, Qiao Wang, Xiaosai Hu, Dan He, Juan Zhao und Guoxing Sun. „A multi-functional zwitterionic hydrogel with unique micro-structure, high elasticity and low modulus“. RSC Advances 12, Nr. 43 (2022): 27907–11. http://dx.doi.org/10.1039/d2ra04915e.
Der volle Inhalt der QuelleLiu, Zhimo, Binfan Zhao, Liucheng Zhang, Shutong Qian, Jiayi Mao, Liying Cheng, Xiyuan Mao et al. „Modulated integrin signaling receptors of stem cells via ultra-soft hydrogel for promoting angiogenesis“. Composites Part B: Engineering 234 (April 2022): 109747. http://dx.doi.org/10.1016/j.compositesb.2022.109747.
Der volle Inhalt der QuelleLepo, Kelly, und Marten van Kerkwijk. „Ultra-soft Sources as Type Ia Supernovae Progenitors“. Proceedings of the International Astronomical Union 7, S281 (Juli 2011): 136–39. http://dx.doi.org/10.1017/s1743921312014871.
Der volle Inhalt der QuelleGori, Manuele, Sara Maria Giannitelli, Gianluca Vadalà, Rocco Papalia, Loredana Zollo, Massimo Sanchez, Marcella Trombetta, Alberto Rainer, Giovanni Di Pino und Vincenzo Denaro. „A Soft Zwitterionic Hydrogel as Potential Coating on a Polyimide Surface to Reduce Foreign Body Reaction to Intraneural Electrodes“. Molecules 27, Nr. 10 (13.05.2022): 3126. http://dx.doi.org/10.3390/molecules27103126.
Der volle Inhalt der QuelleRosenstock, D., T. Gerber, C. Castro Müller, S. Stille und J. Banik. „Process Stability and Application of 1900 MPa Grade Press Hardening Steel with reduced Hydrogen Susceptibility“. IOP Conference Series: Materials Science and Engineering 1238, Nr. 1 (01.05.2022): 012013. http://dx.doi.org/10.1088/1757-899x/1238/1/012013.
Der volle Inhalt der QuelleYurakov, Yury A., Yaroslav A. Peshkov, Evelina P. Domashevskaya, Vladimir A. Terekhov, Konstantin A. Barkov, Anatoly N. Lukin und Alexander V. Sitnikov. „A study of multilayer nanostructures [(Co45Fe45Zr10)35(Al2O3)65/a-Si:H]100 and [(Co45Fe45Zr10)35(Al2O3)65/a-Si]120 by means of XRD, XRR, IR spectroscopy, and USXES“. European Physical Journal Applied Physics 87, Nr. 2 (August 2019): 21301. http://dx.doi.org/10.1051/epjap/2019190131.
Der volle Inhalt der QuelleYamada, Hajime, Shiho Takahashi, Kana Yamashita, Hisashi Miyafuji, Hiroyuki Ohno und Tatsuhiko Yamada. „High-throughput analysis of softwood lignin using tetra-n-butylphosphonium hydroxide (TBPH)“. BioResources 12, Nr. 4 (30.10.2017): 9396–406. http://dx.doi.org/10.15376/biores.12.4.9396-9406.
Der volle Inhalt der QuelleRao, C. N. R., Ved Varun Agrawal, Kanishka Biswas, Ujjal K. Gautam, Moumita Ghosh, A. Govindaraj, G. U. Kulkarni, K. P. Kalyanikutty, Kripasindhu Sardar und S. R. C. Vivekchand. „Soft chemical approaches to inorganic nanostructures“. Pure and Applied Chemistry 78, Nr. 9 (01.01.2006): 1619–50. http://dx.doi.org/10.1351/pac200678091619.
Der volle Inhalt der QuelleLomonaco, Quentin, Karine Abadie, Jean-Michel Hartmann, Christophe Morales, Paul Noël, Tanguy Marion, Christophe Lecouvey, Anne-Marie Papon und Frank Fournel. „Soft Surface Activated Bonding of Hydrophobic Silicon Substrates“. ECS Meeting Abstracts MA2023-02, Nr. 33 (22.12.2023): 1601. http://dx.doi.org/10.1149/ma2023-02331601mtgabs.
Der volle Inhalt der QuelleWang, Zhuang, Xiaoyun Xu, Renjie Tan, Shuai Zhang, Ke Zhang und Jinlian Hu. „Hierarchically Structured Hydrogel Composites with Ultra‐High Conductivity for Soft Electronics“. Advanced Functional Materials, 31.12.2023. http://dx.doi.org/10.1002/adfm.202312667.
Der volle Inhalt der QuelleJaspers, Maarten, Matthew Dennison, Mathijs F. J. Mabesoone, Frederick C. MacKintosh, Alan E. Rowan und Paul H. J. Kouwer. „Ultra-responsive soft matter from strain-stiffening hydrogels“. Nature Communications 5, Nr. 1 (Dezember 2014). http://dx.doi.org/10.1038/ncomms6808.
Der volle Inhalt der QuelleYe, Yuhang, Zhangmin Wan, P. D. S. H. Gunawardane, Qi Hua, Siheng Wang, Jiaying Zhu, Mu Chiao, Scott Renneckar, Orlando J. Rojas und Feng Jiang. „Ultra‐Stretchable and Environmentally Resilient Hydrogels Via Sugaring‐Out Strategy for Soft Robotics Sensing“. Advanced Functional Materials, 27.02.2024. http://dx.doi.org/10.1002/adfm.202315184.
Der volle Inhalt der QuelleZhang, Qingtian, Hongda Lu, Guolin Yun, Liping Gong, Zexin Chen, Shida Jin, Haiping Du, Zhen Jiang und Weihua Li. „A Laminated Gravity‐Driven Liquid Metal‐Doped Hydrogel of Unparalleled Toughness and Conductivity“. Advanced Functional Materials, 06.10.2023. http://dx.doi.org/10.1002/adfm.202308113.
Der volle Inhalt der QuelleZhang, Jianhua, Jiahe Liao, Zemin Liu, Rongjing Zhang und Metin Sitti. „Liquid Metal Microdroplet‐Initiated Ultra‐Fast Polymerization of a Stimuli‐Responsive Hydrogel Composite“. Advanced Functional Materials, 12.11.2023. http://dx.doi.org/10.1002/adfm.202308238.
Der volle Inhalt der QuelleZhang, Jipeng, Yang Hu, Lina Zhang, Jinping Zhou und Ang Lu. „Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics“. Nano-Micro Letters 15, Nr. 1 (07.12.2022). http://dx.doi.org/10.1007/s40820-022-00980-9.
Der volle Inhalt der QuelleDing, Baofu, Pengyuan Zeng, Ziyang Huang, Lixin Dai, Tianshu Lan, Hao Xu, Yikun Pan et al. „A 2D material–based transparent hydrogel with engineerable interference colours“. Nature Communications 13, Nr. 1 (08.03.2022). http://dx.doi.org/10.1038/s41467-021-26587-z.
Der volle Inhalt der QuelleChong, Jooyeun, Changhoon Sung, Kum Seok Nam, Taewon Kang, Hyunjun Kim, Haeseung Lee, Hyunchang Park, Seongjun Park und Jiheong Kang. „Highly conductive tissue-like hydrogel interface through template-directed assembly“. Nature Communications 14, Nr. 1 (18.04.2023). http://dx.doi.org/10.1038/s41467-023-37948-1.
Der volle Inhalt der QuellePitenis, Angela A., Juan Manuel Urueña, Ryan M. Nixon, Tapomoy Bhattacharjee, Brandon A. Krick, Alison C. Dunn, Thomas E. Angelini und W. Gregory Sawyer. „Lubricity from Entangled Polymer Networks on Hydrogels“. Journal of Tribology 138, Nr. 4 (26.07.2016). http://dx.doi.org/10.1115/1.4032889.
Der volle Inhalt der QuelleCafiso, Diana, Federico Bernabei, Matteo Lo Preti, Simone Lantean, Ignazio Roppolo, Candido Fabrizio Pirri und Lucia Beccai. „DLP‐Printable Porous Cryogels for 3D Soft Tactile Sensing“. Advanced Materials Technologies, 14.02.2024. http://dx.doi.org/10.1002/admt.202302041.
Der volle Inhalt der QuelleSans, Jordi, Ingrid Azevedo Gonçalves und Robert Quintana. „Establishing Quartz Crystal Microbalance with Dissipation (QCM‐D) Coupled with Spectroscopic Ellipsometry (SE) as an Advantageous Technique for the Characterization of Ultra‐Thin Film Hydrogels“. Small, 04.03.2024. http://dx.doi.org/10.1002/smll.202312041.
Der volle Inhalt der QuelleYu, Xiaohui, Haopeng Zhang, Yufei Wang, Xiaoshan Fan, Zibiao Li, Xu Zhang und Tianxi Liu. „Highly Stretchable, Ultra‐Soft, and Fast Self‐Healable Conductive Hydrogels Based on Polyaniline Nanoparticles for Sensitive Flexible Sensors“. Advanced Functional Materials, Juni 2022, 2204366. http://dx.doi.org/10.1002/adfm.202204366.
Der volle Inhalt der QuelleLi, Xin, Ruizhe Hu, Zhiqiang Xiong, Dan Wang, Zhixia Zhang, Chongbo Liu, Xiaojun Zeng, Dezhi Chen, Renchao Che und Xuliang Nie. „Metal–Organic Gel Leading to Customized Magnetic-Coupling Engineering in Carbon Aerogels for Excellent Radar Stealth and Thermal Insulation Performances“. Nano-Micro Letters 16, Nr. 1 (04.12.2023). http://dx.doi.org/10.1007/s40820-023-01255-7.
Der volle Inhalt der QuelleZhou, Yan, Xiaoteng Jia, Daxin Pang, Shan Jiang, Meihua Zhu, Geyu Lu, Yaping Tian, Caiyun Wang, Danming Chao und Gordon Wallace. „An integrated Mg battery-powered iontophoresis patch for efficient and controllable transdermal drug delivery“. Nature Communications 14, Nr. 1 (18.01.2023). http://dx.doi.org/10.1038/s41467-023-35990-7.
Der volle Inhalt der QuelleLi, Shengnan, Hailong Yang, Nannan Zhu, Guoqi Chen, YueYue Miao, Jingxia Zheng, Yang Cong et al. „Biotissue‐Inspired Anisotropic Carbon Fiber Composite Hydrogels for Logic Gates, Integrated Soft Actuators, and Sensors with Ultra‐High Sensitivity“. Advanced Functional Materials, 15.12.2022, 2211189. http://dx.doi.org/10.1002/adfm.202211189.
Der volle Inhalt der QuelleHussain, Ashhar, Javad Rahmannezhad, Gyeong Min Choi, Seo Gyun Kim, Wook Ryol Hwang, Jinhwan Yoon und Heon Sang Lee. „Hyper-elastic behavior of soft-tissue like microgels in two-phase converging microchannel flow“. Physics of Fluids 35, Nr. 12 (01.12.2023). http://dx.doi.org/10.1063/5.0174625.
Der volle Inhalt der QuelleLiu, Yafei, Yujie Gui, Ying Lv, Huixia Feng, Xia Zhao, Jianhui Qiu, Xuemei Ma und Yuchen Yang. „Conductive MXene nanocomposite organohydrogels for ultra-stretchable, low-temperature resistant and stable strain sensors“. Journal of Materials Chemistry C, 2024. http://dx.doi.org/10.1039/d3tc03862a.
Der volle Inhalt der QuelleChen, Qin, Xinyue Zhang, Siyu Liu, Kai Chen, Cunao Feng, Xiaowei Li, Jianwei Qi, Yong Luo, Hongtao Liu und Dekun Zhang. „Cartilage-bone inspired the construction of soft-hard composite material with excellent interfacial binding performance and low friction for artificial joints“. Friction, 16.07.2022. http://dx.doi.org/10.1007/s40544-022-0645-2.
Der volle Inhalt der QuelleShur, Michael, Outman Akouissi, Olivier Rizzo, Didier J. Colin, John M. Kolinski und Stéphanie P. Lacour. „Revealing the complexity of ultra-soft hydrogel re-swelling inside the brain“. Biomaterials, Januar 2023, 122024. http://dx.doi.org/10.1016/j.biomaterials.2023.122024.
Der volle Inhalt der QuelleChen, Yuewei, Yanyan Zhou, Zihe Hu, Weiying Lu, Zhuang Li, Ning Gao, Nian Liu et al. „Gelatin-Based Metamaterial Hydrogel Films with High Conformality for Ultra-Soft Tissue Monitoring“. Nano-Micro Letters 16, Nr. 1 (29.11.2023). http://dx.doi.org/10.1007/s40820-023-01225-z.
Der volle Inhalt der QuelleSharma, Vinay, Xinfeng Shi, George Yao, George M. Pharr und James Yuliang Wu. „Surface characterization of an ultra-soft contact lens material using an atomic force microscopy nanoindentation method“. Scientific Reports 12, Nr. 1 (21.11.2022). http://dx.doi.org/10.1038/s41598-022-24701-9.
Der volle Inhalt der QuelleZhong, Shihao, Zhengyuan Xin, Yaozhen Hou, Yang Li, Hen-Wei Huang, Tao Sun, Qing Shi und Huaping Wang. „Double-Modal Locomotion of a Hydrogel Ultra-Soft Magnetic Miniature Robot with Switchable Forms“. Cyborg and Bionic Systems, 21.11.2023. http://dx.doi.org/10.34133/cbsystems.0077.
Der volle Inhalt der QuelleOh, Byungkook, Young-Soo Lim, Kun Woo Ko, Hyeonyeob Seo, Dong Jun Kim, Dukyoo Kong, Jae Min You et al. „Ultra-soft and highly stretchable tissue-adhesive hydrogel based multifunctional implantable sensor for monitoring of overactive bladder“. Biosensors and Bioelectronics, Januar 2023, 115060. http://dx.doi.org/10.1016/j.bios.2023.115060.
Der volle Inhalt der QuelleLiu, Hui, Weiyi Zhao, Yunlei Zhang, Xiaoduo Zhao, Shuanhong Ma, Michele Scaraggi und Feng Zhou. „Robust Super‐Lubricity for Novel Cartilage Prototype Inspired by Scallion Leaf Architecture“. Advanced Functional Materials, 04.01.2024. http://dx.doi.org/10.1002/adfm.202310271.
Der volle Inhalt der QuelleZhao, Lianjia, Hao Xu, Lingchen Liu, Yiqiang Zheng, Wei Han und Lili Wang. „MXene‐Induced Flexible, Water‐Retention, Semi‐Interpenetrating Network Hydrogel for Ultra‐Stable Strain Sensors with Real‐Time Gesture Recognition“. Advanced Science, 06.09.2023. http://dx.doi.org/10.1002/advs.202303922.
Der volle Inhalt der QuelleXue, Kai, Changyou Shao, Jie Yu, Hongmei Zhang, Bing Wang, Wenfeng Ren, Yabin Cheng et al. „Initiatorless Solar Photopolymerization of Versatile and Sustainable Eutectogels as Multi‐Response and Self‐Powered Sensors for Human–Computer Interface“. Advanced Functional Materials, 08.09.2023. http://dx.doi.org/10.1002/adfm.202305879.
Der volle Inhalt der QuelleWang, Xue, Liguo Wang, Chen Liu, Yan Cao, Peng He, Yu Cui und Huiquan Li. „Self‐Healing Polyurethane Elastomers with Superior Tensile Strength and Elastic Recovery Based on Dynamic Oxime‐Carbamate and Hydrogen Bond Interactions“. Macromolecular Rapid Communications, 09.05.2024. http://dx.doi.org/10.1002/marc.202400022.
Der volle Inhalt der Quelle