Auswahl der wissenschaftlichen Literatur zum Thema „Ultra-reliable“

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ultra-reliable" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Zeitschriftenartikel zum Thema "Ultra-reliable"

1

Jones, Harry. „Ultra Reliable Space Life Support Systems“. SAE International Journal of Aerospace 1, Nr. 1 (29.06.2008): 482–98. http://dx.doi.org/10.4271/2008-01-2160.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Husain, Syed S., Andreas Kunz, Athul Prasad, Emmanouil Pateromichelakis und Konstantinos Samdanis. „Ultra-High Reliable 5G V2X Communications“. IEEE Communications Standards Magazine 3, Nr. 2 (Juni 2019): 46–52. http://dx.doi.org/10.1109/mcomstd.2019.1900008.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Daniel Sheu, D. „An ultra-reliable board identification system“. Journal of Manufacturing Systems 15, Nr. 2 (Januar 1996): 84–94. http://dx.doi.org/10.1016/0278-6125(96)82334-x.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Park, Jihong, Sumudu Samarakoon, Hamid Shiri, Mohamed K. Abdel-Aziz, Takayuki Nishio, Anis Elgabli und Mehdi Bennis. „Extreme ultra-reliable and low-latency communication“. Nature Electronics 5, Nr. 3 (März 2022): 133–41. http://dx.doi.org/10.1038/s41928-022-00728-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Soldani, David, Y. Jay Guo, Bernard Barani, Preben Mogensen, Chih-Lin I und Sajal K. Das. „5G for Ultra-Reliable Low-Latency Communications“. IEEE Network 32, Nr. 2 (März 2018): 6–7. http://dx.doi.org/10.1109/mnet.2018.8329617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Zemen, Thomas. „Wireless 5G ultra reliable low latency communications“. e & i Elektrotechnik und Informationstechnik 135, Nr. 7 (02.10.2018): 445–48. http://dx.doi.org/10.1007/s00502-018-0645-0.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Lezzar, Mohamed Yacine, und Mustafa Mehmet-Ali. „Optimization of ultra-reliable low-latency communication systems“. Computer Networks 197 (Oktober 2021): 108332. http://dx.doi.org/10.1016/j.comnet.2021.108332.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Eggers, Patrick C. F., Marko Angjelichinoski und Petar Popovski. „Wireless Channel Modeling Perspectives for Ultra-Reliable Communications“. IEEE Transactions on Wireless Communications 18, Nr. 4 (April 2019): 2229–43. http://dx.doi.org/10.1109/twc.2019.2901788.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Elbamby, Mohammed S., Cristina Perfecto, Mehdi Bennis und Klaus Doppler. „Toward Low-Latency and Ultra-Reliable Virtual Reality“. IEEE Network 32, Nr. 2 (März 2018): 78–84. http://dx.doi.org/10.1109/mnet.2018.1700268.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Nielsen, Jimmy Jessen, Rongkuan Liu und Petar Popovski. „Ultra-Reliable Low Latency Communication Using Interface Diversity“. IEEE Transactions on Communications 66, Nr. 3 (März 2018): 1322–34. http://dx.doi.org/10.1109/tcomm.2017.2771478.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Dissertationen zum Thema "Ultra-reliable"

1

Harper, Rick. „Critical issues in ultra-reliable parallel processing“. Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14802.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Kharel, B. (Binod). „Ultra reliable low latency communication in MTC network“. Master's thesis, University of Oulu, 2018. http://jultika.oulu.fi/Record/nbnfioulu-201809212822.

Der volle Inhalt der Quelle
Annotation:
Abstract. Internet of things is in progress to build the smart society, and wireless networks are critical enablers for many of its use cases. In this thesis, we present some of the vital concept of diversity and multi-connectivity to achieve ultra-reliability and low latency for machine type wireless communication networks. Diversity is one of the critical factors to deal with fading channel impairments, which in term is a crucial factor to achieve targeted outage probabilities and try to reach out such requirement of five 9’s as defined by some standardization bodies. We evaluate an interference-limited network composed of multiple remote radio heads connected to the user equipment. Some of those links are allowed to cooperate, thus reducing interference, or to perform more elaborated strategies such as selection combining or maximal ratio combining. Therefore, we derive their respective closed-form analytical solutions for respective outage probabilities. We provide extensive numerical analysis and discuss the gains of cooperation and multi-connectivity enabled to be a centralized radio access network.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Özenir, Onur. „Redundancy techniques for 5G Ultra Reliable Low Latency Communications“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25082/.

Der volle Inhalt der Quelle
Annotation:
The 5G Core Network architecture is modeled to include instruments that can establish networks built on the same physical infrastructure but serve different service categories for communication types with varying characteristics. Relying on virtualization and cloud technologies, these instruments make the 5G system different from previous mobile communication systems, change the user profile, and allow new business models to be included in the system. The subject of this thesis includes the study of Ultra-reliable low latency communication, which is one of the fundamental service categories defined for the 5G system, and the analysis of the techniques presented in 3GPP’s Release 16, which enhance the service parameters by modifying the core network. In the theoretical part, the 5G system and URLLC are introduced with a particular focus on the user plane on the core network. In the implementation part, redundant transmission support on the N3 interface, one of the techniques presented in the technical specification, is modeled using open source software tools (Open5GS and UERANSIM) and network virtualization instruments. As a result of the tests and measurements performed on the model, it was observed that the implemented technique enhanced the system's reliability.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Faxén, Linnea. „A Study on Segmentation for Ultra-Reliable Low-Latency Communications“. Thesis, Linköpings universitet, Kommunikationssystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138568.

Der volle Inhalt der Quelle
Annotation:
To enable wireless control of factories, such that sensor measurements can be sent wirelessly to an actuator, the probability to receive data correctly must be very high and the time it takes to the deliver the data from the sensor to the actuator must be very low. Earlier, these requirements have only been met by cables, but in the fifth generation mobile network this is one of the imagined use cases and work is undergoing to create a system capable of wireless control of factories. One of the problems in this scenario is when all data in a packet cannot be sent in one transmission while ensuring the very high probability of reception of the transmission. This thesis studies this problem in detail by proposing methods to cope with the problem and evaluating these methods in a simulator. The thesis shows that splitting the data into multiple segments and transmitting each at an even higher probability of reception is a good candidate, especially when there is time for a retransmission. When there is only one transmission available, a better candidate is to send the same packet twice. Even if the first packet cannot achieve the very high probability of reception, the combination of the first and second packet might be able to.
För att möjliggöra trådlös kontroll av fabriker, till exempel trådlös sändning av data uppmätt av en sensor till ett ställdon som agerar på den emottagna signalen, så måste sannolikheten att ta emot datan korrekt vara väldigt hög och tiden det tar att leverera data från sensorn till ställdonet vara mycket kort. Tidigare har endast kablar klarat av dessa krav men i den femte generationens mobila nätverk är trådlös kontroll av fabriker ett av användningsområdena och arbete pågår för att skapa ett system som klarar av det. Ett av problemen i detta användningsområde är när all data i ett paket inte kan skickas i en sändning och klara av den väldigt höga sannolikheten för mottagning. Denna uppsats studerar detta problem i detalj och föreslår metoder för att hantera problemet samt utvärderar dessa metoder i en simulator. Uppsatsen visar att delning av ett paket i flera segment och sändning av varje segment med en ännu högre sannolikhet för mottagning är en bra kandidat, speciellt när det finns tid för en omsändning. När det endast finns tid för en sändning verkar det bättre att skicka samma paket två gånger. Även om det första paketet inte kan uppnå den höga sannolikheten för mottagning så kan kanske kombinationen av det första och andra paketet göra det.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Maric, Bojan. „Cache designs for reliable hybrid high and ultra-low voltage operation“. Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/144563.

Der volle Inhalt der Quelle
Annotation:
Increasing demand for implementing highly-miniaturized battery-powered ultra-low-cost systems (e.g., below 1 USD) in emerging applications such as body, urban life and environment monitoring, etc., has introduced many challenges in the chip design. Such applications require high performance occasionally, but very little energy consumption during most of the time in order to extend battery lifetime. In addition, they require real-time guarantees. The most suitable technological solution for those devices consists of using hybrid processors able to operate at: (i) high voltage to provide high performance and (ii) near-/sub-threshold (NST) voltage to provide ultra-low energy consumption. However, the most efficient SRAM memories for each voltage level differ and it is mandatory trading off different SRAM designs, especially in cache memories, which occupy most of the processor¿s area. In this Thesis, we analyze the performance/power tradeoffs involved in the design of SRAM L1 caches for reliable hybrid high and NST Vcc operation from a microarchitectural perspective. We develop new, simple, single-Vcc domain hybrid cache architectures and data management mechanisms that satisfy all stringent needs of our target market. Proposed solutions are shown to have high energy efficiency with negligible impact on average performance while maintaining strong performance guarantees as required for our target market.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Le, Trung Kien. „Physical layer design for ultra-reliable low-latency communications in 5G“. Electronic Thesis or Diss., Sorbonne université, 2021. http://www.theses.fr/2021SORUS198.

Der volle Inhalt der Quelle
Annotation:
L'émergence de nouveaux cas et d’applications tels que la réalité virtuelle/augmentée, l'automatisation industrielle, les véhicules autonomes, etc. en 5G fait définir au Third Generation Partnership Project (3GPP) Ultra-reliable low-latency communications (URLLC) comme un des trois services. Pour soutenir URLLC avec des exigences strictes de la fiabilité et de la latence, 3GPP Release 15 et 16 ont standardisé des fonctionnalités d’URLLC dans le spectre sous licence. Release 17 en cours agrandit des fonctionnalités d’URLLC au spectre sans licence pour cibler des nouveaux cas dans des scénarios industriels. Dans la première partie de cette thèse du Chapitre 2 au Chapitre 4, nous nous concentrons sur URLLC dans le spectre sous licence. La première étude est confrontée au problème de garantir le nombre des répétitions dans des uplink configured-grant (CG) ressources. Ensuite, nous étudions la collision entre une eMBB UL transmission d'un UE et une URLLC UL transmission d'un autre UE sur des CG ressources. Enfin, nous recherchons la DL transmission où le feedback de la DL semi-persistent scheduling transmission est abandonné à cause du conflit entre des DL/UL symboles. Dans la deuxième partie du Chapitre 5 au Chapitre 8, nous nous focalisons sur URLLC dans le spectre sans licence. Dans le spectre sans licence, un appareil demande d'accéder au canal en utilisant load based equipment (LBE) ou frame based equipment (FBE). L’incertitude d’acquérir un canal par LBE ou FBE pourrait empêcher la URLLC transmission d’atteindre l’exigence de la latence. Par conséquent, l'étude de l'impact de LBE ou FBE sur la URLLC transmission et des améliorations de LBE et de FBE sont nécessaires
The advent of new use cases and new applications such as augmented/virtual reality, industrial automation, autonomous vehicles, etc. in 5G has made the Third Generation Partnership Project (3GPP) specify Ultra-reliable low-latency communications (URLLC) as one of the service categories. To support URLLC with the strict requirements of reliability and latency, 3GPP Release 15 and Release 16 have specified the URLLC features in licensed spectrum. The ongoing 3GPP Release 17 extends the URLLC features to unlicensed spectrum to target the new use cases in the industrial scenario. In the first part of the thesis from Chapter 2 to Chapter 4, we focus on the URLLC in licensed spectrum. The first study deals with the problem of ensuring the configured number of uplink (UL) configured-grant (CG) repetitions of a transport block. Secondly, we study the collisions of an eMBB UL transmission of a user equipment (UE) and an URLLC UL transmission of another UE on the CG resources. Thirdly, the focus of this study is the downlink (DL) transmission where the feedback of the DL semi-persistent scheduling transmission is dropped due to the conflict of the DL/UL symbols. In the second part from Chapter 5 to Chapter 8, we focus on URLLC operation in unlicensed spectrum. In unlicensed spectrum, a 5G device is required to access to a channel by using load based equipment (LBE) or frame based equipment (FBE). The uncertainty of obtaining channel access through LBE or FBE can impede the achievement of the URLLC latency requirements. Therefore, the study of impact of LBE and FBE on URLLC transmission and the enhancements of LBE and FBE are needed
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Sulieman, Nabeel Ibrahim. „Diversity and Network Coded 5G Wireless Network Infrastructure for Ultra-Reliable Communications“. Scholar Commons, 2019. https://scholarcommons.usf.edu/etd/7961.

Der volle Inhalt der Quelle
Annotation:
This dissertation is directed towards improving the performance of 5G Wireless Fronthaul Networks and Wireless Sensor Networks, as measured by reliability, fault recovery time, energy consumption, efficiency, and security of transmissions, beyond what is achievable with conventional error control technology. To achieve these ambitious goals, the research is focused on novel applications of networking techniques, such as Diversity Coding, where a feedforward network design uses forward error control across spatially diverse paths to enable reliable wireless networking with minimal delay, in a wide variety of application scenarios. These applications include Cloud-Radio Access Networks (C-RANs), which is an emerging 5G wireless network architecture, where Remote Radio Heads (RRHs) are connected to the centralized Baseband Unit (BBU) via fronthaul networks, to enable near-instantaneous recovery from link/node failures. In addition, the ability of Diversity Coding to recover from multiple simultaneous link failures is demonstrated in many network scenarios. Furthermore, the ability of Diversity Coding to enable significantly simpler and thus lower-cost routing than other types of restoration techniques is demonstrated. Achieving high throughput for broadcasting/multicasting applications, with the required level of reliability is critical for the efficient operation of 5G wireless infrastructure networks. To improve the performance of C-RAN networks, a novel technology, Diversity and Network Coding (DC-NC), which synergistically combines Diversity Coding and Network Coding, is introduced. Application of DC-NC to several 5G fronthaul networks, enables these networks to provide high throughput and near-instant recovery in the presence of link and node failures. Also, the application of DC-NC coding to enhance the performance of downlink Joint Transmission-Coordinated Multi Point (JT-CoMP) in 5G wireless fronthaul C-RANs is demonstrated. In all these scenarios, it is shown that DC-NC coding can provide efficient transmission and reduce the resource consumption in the network by about one-third for broadcasting/multicasting applications, while simultaneously enabling near-instantaneous latency in recovery from multiple link/node failures in fronthaul networks. In addition, it is shown by applying the DC-NC coding, the number of redundant links that uses to provide the required level of reliability, which is an important metric to evaluate any protection system, is reduced by about 30%-40% when compared to that of Diversity Coding. With the additional goal of further reducing of the recovery time from multiple link/node failures and maximizing the network reliability, DC-NC coding is further improved to be able to tolerate multiple, simultaneous link failures with less computational complexity and lower energy consumption. This is accomplished by modifying Triangular Network Coding (TNC) and synergistically combining TNC with Diversity Coding to create enhanced DC-NC (eDC-NC), that is applied to Fog computing-based Radio Access Networks (F-RAN) and Wireless Sensor Networks (WSN). Furthermore, it is demonstrated that the redundancy percentage for protecting against n link failures is inversely related to the number of source data streams, which illustrates the scalability of eDC-NC coding. Solutions to enable synchronized broadcasting are proposed for different situations. The ability of eDC-NC coding scheme to provide efficient and secure broadcasting for 5G wireless F-RAN fronthaul networks is also demonstrated. The security of the broadcasting data streams can be obtained more efficiently than standardized methods such as Secure Multicasting using Secret (Shared) Key Cryptography.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Gujarati, Arpan [Verfasser], und Björn [Akademischer Betreuer] Brandenburg. „Towards “Ultra-Reliable” CPS: Reliability Analysis of Distributed Real-Time Systems / Arpan Gujarati ; Betreuer: Björn Brandenburg“. Kaiserslautern : Technische Universität Kaiserslautern, 2020. http://d-nb.info/1221599763/34.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Dosti, E. (Endrit). „Ultra reliable communication via optimum power allocation for repetition and parallel coding in finite block-length“. Master's thesis, University of Oulu, 2017. http://jultika.oulu.fi/Record/nbnfioulu-201706082640.

Der volle Inhalt der Quelle
Annotation:
Abstract. In this thesis we evaluate the performance of several retransmission mechanisms with ultra-reliability constraints. First, we show that achieving a very low packet outage probability by using an open loop setup is a difficult task. Thus, we resort to retransmission schemes as a solution for achieving the required low outage probabilities for ultra reliable communication. We analyze three retransmission protocols, namely Type-1 Automatic Repeat Request (ARQ), Chase Combining Hybrid ARQ (CC-HARQ) and Incremental Redundancy (IR) HARQ. For these protocols, we develop optimal power allocation algorithms that would allow us to reach any outage probability target in the finite block-length regime. We formulate the power allocation problem as minimization of the average transmitted power under a given outage probability and maximum transmit power constraint. By utilizing the Karush-Kuhn-Tucker (KKT) conditions, we solve the optimal power allocation problem and provide closed form solutions. Next, we analyze the effect of implementing these protocols on the throughput of the system. We show that by using the proposed power allocation scheme we can minimize the loss of throughput that is caused from the retransmissions. Furthermore, we analyze the effect of the feedback delay length in our protocols.Optimaalista tehoallokointia toisto- ja rinnakkaiskoodaukseen käyttävä erittäin luotettava tiedonsiirto äärellisillä lohkonpituuksilla. Tiivistelmä. Tässä työssä arvioidaan usean uudelleenlähetysmenetelmän suorituskykyä erittäin luotettavan tietoliikenteen järjestelmäoletuksin. Aluksi osoitetaan, että hyvin alhaisen pakettilähetysten katkostodennäköisyyden saavuttaminen avoimen silmukan menetelmillä on haastava tehtävä. Niinpä työssä turvaudutaan uudelleenlähetyspohjaisiin ratkaisuihin, joilla on mahdollista päästä suuren luotettavuuden edellyttämiin hyvin alhaisiin katkostodennäköisyyksiin. Työssä analysoidaan kolmea uudelleenlähetysprotokollaa, nimittäin tyypin 1 automaattista uudelleen lähetystä (ARQ), Chase Combining -tyyppistä hybridi-ARQ -protokollaa (CC-HARQ) ja redundanssia lisäävää HARQ-protokollaa (IR-HARQ). Näille protokollille kehitetään optimaalisia tehon allokointialgoritmeja, joiden avulla päästään halutulle katkostodennäköisyystasolle äärellisillä lohkonpituuksilla. Tehon allokointiongelma muotoillaan keskimääräisen lähetystehon minimointiongelmaksi toteuttaen halutun katkostodennäköisyyden ja maksimilähetystehorajoituksen. Käyttämällä Karush-Kuhn-Tucker (KKT) -ehtoja ratkaistaan optimaalinen tehoallokointiongelma ja esitetään ratkaisut suljetussa muodossa. Seuraavaksi analysoidaan näiden protokollien järjestelmätason toteutusta läpäisykykytarkastelujen avulla. Niillä osoitetaan, että ehdotetulla tehon allokointimenetelmällä voidaan minimoida uudelleen lähetyksistä aiheutuvia suorituskykyhäviöitä. Lisäksi työssä tutkitaan takaisinkytkentäviiveen vaikutusta esitettyihin protokolliin.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Leroi, Lisa. „Quantitative MRI : towards fast and reliable T₁, T₂ and proton density mapping at ultra-high field“. Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS429/document.

Der volle Inhalt der Quelle
Annotation:
L’IRM quantitative recouvre l’ensemble des méthodes permettant de mesurer des paramètres physiques accessibles en Résonance Magnétique Nucléaire. Elle offre un bénéfice par rapport à l’imagerie en pondération classiquement utilisée, notamment pour la détection, la caractérisation physiopathologique mais aussi pour le suivi thérapeutique des pathologies. Malgré ce potentiel avéré connu de longue date, ces méthodes restent peu utilisées dans la routine clinique. La raison principale est la longueur des acquisitions par rapport à l’approche classique. Les paramètres physiques que nous souhaitons étudier plus particulièrement sont le temps de relaxation longitudinal (T₁), transversal (T₂), le coefficient de diffusion apparent (ADC), et la densité de protons (DP). Malgré la possibilité d’atteindre une meilleure qualité d’images, ces cartographies in vivo sont quasiment inexistantes dans la littérature au-delà de 3T car leur implémentation nécessite de surmonter un certain nombre de limites spécifiques aux IRM ultra-haut champs (UHF). Au travers de ce projet de thèse, une méthode d’imagerie quantitative basée sur les états de configurations (QuICS) a été implémentée, pour déterminer ces paramètres quantitatifs de façon simultanée sous fortes contraintes propres aux UHF. L’approche a été optimisée dans le but d’obtenir des cartographies fiables et rapides. Le potentiel de la méthode a été démontré dans un premier temps in vitro sur un noyau tel que le sodium démontrant des propriétés complexes à cartographier. Puis dans un second temps, des acquisitions ont été réalisées sur proton, in vivo, en un temps d’acquisition compatible avec une utilisation en routine clinique à 7T. L’application d’une telle méthode d’IRM quantitative à UHF sur des populations permettra d’ouvrir de nouvelles voies d’études pour le futur
Quantitative MRI refers to methods able to measure different physical parameters accessible in Nuclear Magnetic Resonance. It offers benefits compared to weighting imaging commonly used, for the detection, the pathophysiological characterization but also for the therapeutic follow-up of pathologies for example. Despite this long-established potential, these methods remain little used in clinical routine. The main reason is the long acquisition time compared to the classical approach. The physical parameters that we will study more particularly are the longitudinal (T₁), transverse (T₂) relaxation time, the apparent diffusion coefficient (ADC), and the proton density (DP). Despite the possibility to achieve a better image quality, these in vivo mappings are virtually non-existent in the literature beyond 3T because their implementation requires overcom-ing a number of specific ultra-high-field (UHF) MRI limits. Through this thesis project, a Quantitative Imaging method using Configuration States (QuICS) was implemented under strong UHF constraints, to determine these parameters simultaneously. The technique has been optimized to obtain fast and reliable maps. The potential of the method was first demon-strated in vitro on a nucleus such as sodium, exhibiting complex properties. As a second step, acquisitions were performed in proton, in vivo, in an clinically-relevant acquisition time, compatible with a routine use at 7T for population imaging. The application of such a method of quantitative MRI to UHF will open new research possibilities for the future
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Bücher zum Thema "Ultra-reliable"

1

Ultra-Reliable Seasonal Trades. Windsor Books, 1999.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Steyaert, Michiel, und Wim Vereecken. Ultra-Wideband Pulse-Based Radio: Reliable Communication over a Wideband Channel. Springer, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Steyaert, Michiel, und Wim Vereecken. Ultra-Wideband Pulse-based Radio: Reliable Communication over a Wideband Channel. Springer, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Khosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong und Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Incorporated, John, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Khosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong und Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Limited, John, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Spurlock, Virgil K. Design and simulation of an ultra reliable fault tolerant computing system voter and interstage. 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Khosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong und Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Incorporated, John, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Khosravirad, Saeed R., Changyang She, Mehdi Bennis, Trung Q. Duong und Petar Popovski. Ultra-Reliable and Low-Latency Communications Theory and Practice: Advances in 5G and Beyond. Wiley & Sons, Incorporated, John, 2023.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Nelson, Ronald J. The Synergistically Integrated Reliability architecture: A reliability analysis of an ultra-reliable fault tolerant computer design. 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Sudhamasapa, Nophadol. A development and simulation of Synergistically Integrated Reliability (SIR) for an ultra-reliable fault tolerance computer under communication software protocol for the growth algorithm. 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Buchteile zum Thema "Ultra-reliable"

1

Xiao, Qiqi, Jiantao Yuan, Rui Yin, Wei Qi, Celimuge Wu und Xianfu Chen. „Unlicensed Assisted Ultra-Reliable and Low-Latency Transmission“. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 138–51. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94763-7_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Pocovi, Guillermo, Klaus I. Pedersen und Beatriz Soret. „On the Impact of Precoding Errors on Ultra-Reliable Communications“. In Multiple Access Communications, 45–54. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51376-8_4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Erol-Kantarci, Melike, und Antonio Caruso. „Ultra-reliable and Low-Latency Communications for the Smart Grid“. In Encyclopedia of Wireless Networks, 1427–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-319-78262-1_245.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Erol-Kantarci, Melike, und Antonio Caruso. „Ultra-Reliable~and~Low-Latency Communications for the Smart Grid“. In Encyclopedia of Wireless Networks, 1–5. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-32903-1_245-1.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Bishop, Peter. „Does Software Have to Be Ultra Reliable in Safety Critical Systems?“ In Lecture Notes in Computer Science, 118–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40793-2_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Ye, Sigen. „Support of Ultra-reliable and Low-Latency Communications (URLLC) in NR“. In 5G and Beyond, 373–400. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58197-8_13.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Van den Bergh, Bertold, Alessandro Chiumento und Sofie Pollin. „Ultra-Reliable IEEE 802.11 for UAV Video Streaming: From Network to Application“. In Lecture Notes in Electrical Engineering, 637–47. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1627-1_50.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Anzai, Daisuke, Ilangko Balasingham, Georg Fischer und Jainqing Wang. „Reliable and High-Speed Implant Ultra-Wideband Communications with Transmit–Receive Diversity“. In 13th EAI International Conference on Body Area Networks, 27–32. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-29897-5_3.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Yuan, Mingju, Dongxiang Song und Bing Li. „A Comparative Study on Key Technologies of Ultra-Reliable Low Latency Communication“. In Machine Learning for Cyber Security, 112–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62460-6_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Zaki-Hindi, Ayat, Salah-Eddine Elayoubi und Tijani Chahed. „Unlicensed Spectrum for Ultra-Reliable Low-Latency Communication in Multi-tenant Environment“. In Network Games, Control and Optimization, 110–24. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-87473-5_11.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen

Konferenzberichte zum Thema "Ultra-reliable"

1

Jones, Harry. „Ultra Reliable Space Life Support“. In AIAA SPACE 2012 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2012. http://dx.doi.org/10.2514/6.2012-5121.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

Wang, Wei, Dongyang Kang, Wangzhi Dai und Yu-Chong Tai. „Reliable deposition of ultra-thin parylene“. In 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, 2016. http://dx.doi.org/10.1109/memsys.2016.7421661.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

Namazi, A., M. Nourani und M. Saquib. „Reliable Interconnect Grid for Ultra Deep Submicron“. In 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software. IEEE, 2006. http://dx.doi.org/10.1109/dcas.2006.321045.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

Shariatmadari, Hamidreza, Zexian Li, Mikko A. Uusitalo, Sassan Iraji und Riku Jantti. „Link adaptation design for ultra-reliable communications“. In ICC 2016 - 2016 IEEE International Conference on Communications. IEEE, 2016. http://dx.doi.org/10.1109/icc.2016.7511429.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Popovski, Petar. „Ultra-Reliable Communication in 5G Wireless Systems“. In 1st International Conference on 5G for Ubiquitous Connectivity. ICST, 2014. http://dx.doi.org/10.4108/icst.5gu.2014.258154.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Arumugam, Puvan, Davide Barater, Tahar Hamiti und Chris Gerada. „Winding concepts for ultra reliable electrical machines“. In IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014. http://dx.doi.org/10.1109/iecon.2014.7048617.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

Gangopadhyay, Bodhisattwa, João Pedro und Nuno Borges. „Designing Ultra-Reliable 5G-Ready Transport Networks“. In Photonic Networks and Devices. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/networks.2019.net2d.4.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

Abraham, Jens, und Torbjorn Ekman. „Local Diversity and Ultra-Reliable Antenna Arrays“. In 2021 55th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2021. http://dx.doi.org/10.1109/ieeeconf53345.2021.9723123.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Chung, Shine, Wen-Kuan Fang, YC Hsu, JY Hsiao, Lupin Lin und Wen-Hua Yu. „Ultra-small and ultra-reliable innovative fuses scalable from 0.35um to 28nm“. In 2016 International Conference on Microelectronic Test Structures (ICMTS). IEEE, 2016. http://dx.doi.org/10.1109/icmts.2016.7476195.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Chih-Ping Li, Jing Jiang, Wanshi Chen, Tingfang Ji und John Smee. „5G ultra-reliable and low-latency systems design“. In 2017 European Conference on Networks and Communications (EuCNC). IEEE, 2017. http://dx.doi.org/10.1109/eucnc.2017.7980747.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie