Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ultra High Temperature Materials“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ultra High Temperature Materials" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ultra High Temperature Materials"
MASUMOTO, Hiroki. „The Activities of Japan Ultra-high Temperature Materials Research Center and Japan Ultra-high Temperature Materials Research Institute.“ RESOURCES PROCESSING 46, Nr. 4 (1999): 219–24. http://dx.doi.org/10.4144/rpsj1986.46.219.
Der volle Inhalt der QuelleZhang, Guo Jun, Wen Wen Wu, Yan Mei Kan und Pei Ling Wang. „Ultra-High Temperature Ceramics (UHTCs) via Reactive Sintering“. Key Engineering Materials 336-338 (April 2007): 1159–63. http://dx.doi.org/10.4028/www.scientific.net/kem.336-338.1159.
Der volle Inhalt der QuelleKurokawa, Kazuya. „Metal Disilicides as Ultra-High Temperature Oxidation-Resistant and High-Temperature Corrosion-Resistant Materials“. Materia Japan 52, Nr. 9 (2013): 428–33. http://dx.doi.org/10.2320/materia.52.428.
Der volle Inhalt der QuelleFang, Daining, Weiguo Li, Tianbao Cheng, Zhaoliang Qu, Yanfei Chen, Ruzhuan Wang und Shigang Ai. „Review on mechanics of ultra-high-temperature materials“. Acta Mechanica Sinica 37, Nr. 9 (September 2021): 1347–70. http://dx.doi.org/10.1007/s10409-021-01146-3.
Der volle Inhalt der QuelleTanaka, Ryohei. „The International Symposium on Ultra-high Temperature Materials“. Materials at High Temperatures 9, Nr. 4 (November 1991): 237–38. http://dx.doi.org/10.1080/09603409.1991.11689665.
Der volle Inhalt der QuelleFahrenholtz, William G., und Greg E. Hilmas. „Ultra-high temperature ceramics: Materials for extreme environments“. Scripta Materialia 129 (März 2017): 94–99. http://dx.doi.org/10.1016/j.scriptamat.2016.10.018.
Der volle Inhalt der QuelleWANG, RUZHUAN, WEIGUO LI und DAINING FANG. „A THERMO-DAMAGE STRENGTH MODEL FOR THE SiC-DEPLETED LAYER OF ULTRA-HIGH-TEMPERATURE CERAMICS ON HIGH TEMPERATURE OXIDATION“. International Journal of Applied Mechanics 05, Nr. 03 (September 2013): 1350026. http://dx.doi.org/10.1142/s1758825113500269.
Der volle Inhalt der QuelleXu, Lin, Jia Cheng, Xingchao Li, Yin Zhang, Zhen Fan, Yongzhong Song und Zhihai Feng. „Preparation of carbon/carbon‐ultra high temperature ceramics composites with ultra high temperature ceramics coating“. Journal of the American Ceramic Society 101, Nr. 9 (03.04.2018): 3830–36. http://dx.doi.org/10.1111/jace.15565.
Der volle Inhalt der QuelleFuller, Joan, und Michael D. Sacks. „Guest Editorial: Ultra-high temperature ceramics“. Journal of Materials Science 39, Nr. 19 (Oktober 2004): 5885. http://dx.doi.org/10.1023/b:jmsc.0000041685.85043.34.
Der volle Inhalt der QuelleTANAKA, Ryohei. „Heat Resisiting Steels, Superalloys, and Ultra-high Temperature Materials“. Tetsu-to-Hagane 79, Nr. 4 (1993): N282—N289. http://dx.doi.org/10.2355/tetsutohagane1955.79.4_n282.
Der volle Inhalt der QuelleDissertationen zum Thema "Ultra High Temperature Materials"
Petla, Harita. „Computational design of ultra-high temperature ceramic composite materials“. To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2008. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Der volle Inhalt der QuelleWalker, Luke Sky. „Processing of Ultra High Temperature Ceramics“. Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/228496.
Der volle Inhalt der QuelleMiller-Oana, Melia. „Oxidation Behavior of Carbon and Ultra-High Temperature Ceramics“. Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/605121.
Der volle Inhalt der QuellePham, David, und David Pham. „Processing High Purity Zirconium Diboride Ultra-High Temperature Ceramics: Small-to-Large Scale Processing“. Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/621315.
Der volle Inhalt der QuelleHe, Junjing. „High temperature performance of materials for future power plants“. Doctoral thesis, KTH, Materialvetenskap, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-191547.
Der volle Inhalt der QuelleQC 20160905
Lipke, David William. „Novel reaction processing techniques for the fabrication of ultra-high temperature metal/ceramic composites with tailorable microstructures“. Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/43750.
Der volle Inhalt der QuelleWU, QUANYAN. „MICROSTRUCTURAL EVOLUTION IN ADVANCED BOILER MATERIALS FOR ULTRA-SUPERCRITICAL COAL POWER PLANTS“. University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1154363707.
Der volle Inhalt der QuelleAudouard, Lisa. „Conception et caractérisation de matériaux ultra haute température à gradient de propriétés“. Electronic Thesis or Diss., Bourgogne Franche-Comté, 2023. http://www.theses.fr/2023UBFCA019.
Der volle Inhalt der QuelleThe development of a new green ergol prototype for satellite repositioning engines requires more severe thermal and environmental conditions for combustion chamber materials than is currently the case. As a result, alternative materials known as functionally graded materials (FGM) have been developed for several years as part of an ONERA-CNES-ICB study. The aim of this thesis is to pursue the development of this type of ceramic/metal gradient material, in order to optimize its design and ensure that it can be used up to 2400 °C in the presence of water vapor. Firstly, different configurations of FGM developed by air plasma thermal spraying (APS) were tested under vacuum laser heat flux up to 2350 °C. By modelling the cracking of these materials when subjected to thermal shock, the link between the observed degradations and the FGM configurations was better established. In particular, it has been shown that increasing the thickness of the ceramic on the FGM surface is responsible for the appearance and propagation of deeper, deviated cracks.Secondly, the possibility to use such FGM under an oxidising atmosphere at ultra-high temperature was studied through two experimental set ups. The first one is a laser test bench which allowed to assure the resistance of the materials submitted to repeated thermal schocks up to 1800 °C in presence of water vapour. The tested materials presented an appropriate behaviour under the tested conditions. The degradation mechanisms related to FGM oxidation have been identified and compared from one FGM configuration to another and linked to the tested conditions. The second one permits to qualify the behaviour of FGM in the H2/O2 flame of a combustion chamber. Thus, the tested conditions were relatively close to the ones of the intended application. No major degradation was observed after the combustion chamber tests, which demonstrates the potential of this type of FGM for the application.In parallel, a study was carried out about the improvement of the ceramic part of the FGM. Indeed, the thermal expansion coefficient of the chosen metal is twice lower than the one of the chosen ceramic. Thus, and despite the presence of graded layers in-between the metal and the ceramic, high thermomechanical stresses occur at the interfaces between the different layers of the FGM. Thus, a key point of this study consisted in the understanding of the influence of the ceramic composition, and in particular of the amount and nature of the rare earth oxide, on the thermal expansion coefficient. In addition, ionic conductivity and thermal conductivity measurements most accurately reflect the role of thermal and environmental barrier coating of the pure ceramic layer upon the FGM. It has been shown that high content Lu2O3 based compositions are the most promising to be used for the ceramic composition of the FGM. The last part of this thesis was dedicated to study the possibility to heal the cracks observed in the ceramic, which came either from the thermal treatment, either from the thermal tests. Thus, an yttrium disilicate was introduced in the pure ceramic layer of the FGM directly during the elaboration process with APS. Its influence on the resistance of FGM under harsh thermal and environmental conditions was finally reported. In particular, the presence of this disilicate is responsible of chemical transformations in the FGM during high temperature tests
UHLMANN, FRANZISKA JOHANNA LUISE. „Protective Ultra-High Temperature Coatings/ Ceramics (UHTCs) for Ceramic Matrix Composites in Extreme Environments“. Doctoral thesis, Politecnico di Torino, 2016. http://hdl.handle.net/11583/2644372.
Der volle Inhalt der QuelleKrossa, Alexander. „Material characteristics of new ultra high-strength steels manufactured by Giflo Steels“. Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/236243/1/Alexander%2BKrossa%2BThesis%281%29.pdf.
Der volle Inhalt der QuelleBücher zum Thema "Ultra High Temperature Materials"
Shabalin, Igor L. Ultra-High Temperature Materials IV. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-07175-1.
Der volle Inhalt der QuelleShabalin, Igor L. Ultra-High Temperature Materials II. Dordrecht: Springer Netherlands, 2019. http://dx.doi.org/10.1007/978-94-024-1302-1.
Der volle Inhalt der QuelleShabalin, Igor L. Ultra-High Temperature Materials I. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9.
Der volle Inhalt der QuelleShabalin, Igor L. Ultra-High Temperature Materials III. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2039-5.
Der volle Inhalt der QuelleM, Steen, und Lohr R. D, Hrsg. Ultra high temperature mechanical testing. Cambridge: Woodhead, 1995.
Den vollen Inhalt der Quelle findenMAX phases and ultra-high temperature ceramics for extreme environments. Hershey, PA: Engineering Science Reference, an imprint of IGI Global, 2013.
Den vollen Inhalt der Quelle findenFahrenholtz, William G., Eric J. Wuchina, William E. Lee und Yanchun Zhou, Hrsg. Ultra-High Temperature Ceramics. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118700853.
Der volle Inhalt der QuelleCahn, R. W., A. G. Evans und M. McLean, Hrsg. High-temperature Structural Materials. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-011-0589-7.
Der volle Inhalt der QuellePrice, David L. High-temperature levitated materials. Cambridge: Cambridge University Press, 2010.
Den vollen Inhalt der Quelle findenM, Willander, und Hartnagel Hans 1934-, Hrsg. High temperature electronics. London: Chapman & Hall, 1997.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ultra High Temperature Materials"
Shabalin, Igor L. „Introduction“. In Ultra-High Temperature Materials III, 1–10. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2039-5_1.
Der volle Inhalt der QuelleShabalin, Igor L. „Titanium Monocarbide“. In Ultra-High Temperature Materials III, 11–514. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2039-5_2.
Der volle Inhalt der QuelleShabalin, Igor L. „Vanadium Monocarbide“. In Ultra-High Temperature Materials III, 515–707. Dordrecht: Springer Netherlands, 2020. http://dx.doi.org/10.1007/978-94-024-2039-5_3.
Der volle Inhalt der QuelleShabalin, Igor L. „Introduction“. In Ultra-High Temperature Materials I, 1–6. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_1.
Der volle Inhalt der QuelleShabalin, Igor L. „Carbon (Graphene/Graphite)“. In Ultra-High Temperature Materials I, 7–235. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_2.
Der volle Inhalt der QuelleShabalin, Igor L. „Tungsten“. In Ultra-High Temperature Materials I, 237–315. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_3.
Der volle Inhalt der QuelleShabalin, Igor L. „Rhenium“. In Ultra-High Temperature Materials I, 317–57. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_4.
Der volle Inhalt der QuelleShabalin, Igor L. „Osmium“. In Ultra-High Temperature Materials I, 359–86. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_5.
Der volle Inhalt der QuelleShabalin, Igor L. „Tantalum“. In Ultra-High Temperature Materials I, 387–450. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_6.
Der volle Inhalt der QuelleShabalin, Igor L. „Molybdenum“. In Ultra-High Temperature Materials I, 451–529. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-7587-9_7.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ultra High Temperature Materials"
Gardi, Roberto, Antonio Del Vecchio und Roberto Scigliano. „In-Flight Test of Ultra High Temperature Ceramic Materials on Scramspace“. In 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2015. http://dx.doi.org/10.2514/6.2015-3640.
Der volle Inhalt der QuelleCunzeman, Kara, und Peter Schubert. „Survey of Ultra-High Temperature Materials for Applications Above 2000 K“. In AIAA SPACE 2009 Conference & Exposition. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-6508.
Der volle Inhalt der QuelleWu, Xiumei. „Study on the Performance of an Ultra High Temperature Ceramic Material“. In 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering. Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/mmme-16.2016.102.
Der volle Inhalt der QuelleYuh, Chao-Yi, Ling Chen, Adam Franco und Mohammad Farooque. „Review of High-Temperature Fuel Cell Hardware Materials“. In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33163.
Der volle Inhalt der QuelleTului, M., T. Valente und G. Marino. „Plasma Sprayed Ultra High Temperature Ceramic Materials Tested in Simulated Operative Conditions“. In ITSC2005, herausgegeben von E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p0641.
Der volle Inhalt der QuelleScatteia, Luigi, A. Riccio, G. Rufolo, Federico De Filippis, A. Vecchio und Giuliano Marino. „PRORA-USV SHS: Ultra High Temperature Ceramic Materials for Sharp Hot Structures“. In AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-3266.
Der volle Inhalt der Quelle„Microstructural Changes in High and Ultra High Strength Concrete Exposed to High Temperature Environments“. In SP-229: Quality of Concrete Structures and Recent Advances in Concrete Materials and Testing. American Concrete Institute, 2005. http://dx.doi.org/10.14359/14743.
Der volle Inhalt der QuelleGhoshal, Anindya, Michael J. Walock, Andy Nieto, Muthuvel Murugan, Clara Hofmeister-Mock, Marc Pepi, Luis Bravo, Andrew Wright und Jian Luo. „Experimental Analysis and Material Characterization of Ultra High Temperature Composites“. In ASME Turbo Expo 2021: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/gt2021-60384.
Der volle Inhalt der QuelleGarino, Gia. „Fracture strength of multi-component ultra-high temperature carbides“. In MME Undergraduate Research Symposium. Florida International University, 2022. http://dx.doi.org/10.25148/mmeurs.010564.
Der volle Inhalt der QuelleRen, Yuxing, und David CC Lam. „Low Temperature Processable Ultra-Low Dielectric Porous Polyimide for High Frequency Applications“. In 2006 International Conference on Electronic Materials and Packaging. IEEE, 2006. http://dx.doi.org/10.1109/emap.2006.4430666.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ultra High Temperature Materials"
Perepezko, John H. New Oxide Materials for an Ultra High Temperature Environment. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1408528.
Der volle Inhalt der QuelleHyers, Robert W. Non-contact Measurement of Creep in Ultra-High-Temperature Materials. Fort Belvoir, VA: Defense Technical Information Center, November 2009. http://dx.doi.org/10.21236/ada524249.
Der volle Inhalt der QuelleMarschall, Jochen. Testing and Modeling Ultra-High Temperature Ceramic (UHTC) Materials for Hypersonic Flight. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada553782.
Der volle Inhalt der QuelleSpeyer, Robert F. Synthesis and Processing of Ultra-High Temperature Metal Carbide and Metal Diboride Nanocomposite Materials. Fort Belvoir, VA: Defense Technical Information Center, April 2008. http://dx.doi.org/10.21236/ada483547.
Der volle Inhalt der QuelleGupta, Mool C., Chen-Nan Sun und Tyson Baldridge. Preparation of Oxidation-Resistant Ultra High Melting Temperature Materials and Structures Using Laser Method. Fort Belvoir, VA: Defense Technical Information Center, Juni 2009. http://dx.doi.org/10.21236/ada583075.
Der volle Inhalt der QuelleOgale, Amod A. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1039158.
Der volle Inhalt der QuelleCharit, Indrajit, Darryl Butt, Megan Frary und Mark Carroll. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications. Office of Scientific and Technical Information (OSTI), November 2012. http://dx.doi.org/10.2172/1054226.
Der volle Inhalt der QuelleHoward, Isaac, Thomas Allard, Ashley Carey, Matthew Priddy, Alta Knizley und Jameson Shannon. Development of CORPS-STIF 1.0 with application to ultra-high performance concrete (UHPC). Engineer Research and Development Center (U.S.), April 2021. http://dx.doi.org/10.21079/11681/40440.
Der volle Inhalt der QuelleLyding, Joseph. Ultra High Speed High Temperature Motor. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1876185.
Der volle Inhalt der QuelleLee, G. Materials for ultra-high vacuum. Office of Scientific and Technical Information (OSTI), August 1989. http://dx.doi.org/10.2172/6985168.
Der volle Inhalt der Quelle