Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Ubiquitine ligases“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Ubiquitine ligases" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Ubiquitine ligases"
de Palma, Luigi, Mario Marinelli, Matteo Pavan und Alessandro Orazi. „Rôle des ubiquitine ligases MuRF1 et MAFbx dans l’atrophie musculaire chez l’homme“. Revue du Rhumatisme 75, Nr. 1 (Januar 2008): 56–60. http://dx.doi.org/10.1016/j.rhum.2007.04.021.
Der volle Inhalt der QuelleReboud-Ravaux, Michèle. „Dégradation induite des protéines par des molécules PROTAC et stratégies apparentées : développements à visée thérapeutique“. Biologie Aujourd’hui 215, Nr. 1-2 (2021): 25–43. http://dx.doi.org/10.1051/jbio/2021007.
Der volle Inhalt der QuelleDumétier, Baptiste, Aymeric Zadoroznyj und Laurence Dubrez. „IAP-Mediated Protein Ubiquitination in Regulating Cell Signaling“. Cells 9, Nr. 5 (30.04.2020): 1118. http://dx.doi.org/10.3390/cells9051118.
Der volle Inhalt der QuelleTaillandier, Daniel. „Contrôle des voies métaboliques par les enzymes E3 ligases : une opportunité de ciblage thérapeutique“. Biologie Aujourd’hui 215, Nr. 1-2 (2021): 45–57. http://dx.doi.org/10.1051/jbio/2021006.
Der volle Inhalt der QuelleLee, Jaeseok, Youngjun Lee, Young Mee Jung, Ju Hyun Park, Hyuk Sang Yoo und Jongmin Park. „Discovery of E3 Ligase Ligands for Target Protein Degradation“. Molecules 27, Nr. 19 (02.10.2022): 6515. http://dx.doi.org/10.3390/molecules27196515.
Der volle Inhalt der QuelleDel Prete, Dolores, Richard C. Rice, Anjali M. Rajadhyaksha und Luciano D'Adamio. „Amyloid Precursor Protein (APP) May Act as a Substrate and a Recognition Unit for CRL4CRBN and Stub1 E3 Ligases Facilitating Ubiquitination of Proteins Involved in Presynaptic Functions and Neurodegeneration“. Journal of Biological Chemistry 291, Nr. 33 (20.06.2016): 17209–27. http://dx.doi.org/10.1074/jbc.m116.733626.
Der volle Inhalt der QuelleKim, Jong Hum, Seok Keun Cho, Tae Rin Oh, Moon Young Ryu, Seong Wook Yang und Woo Taek Kim. „MPSR1 is a cytoplasmic PQC E3 ligase for eliminating emergent misfolded proteins in Arabidopsis thaliana“. Proceedings of the National Academy of Sciences 114, Nr. 46 (30.10.2017): E10009—E10017. http://dx.doi.org/10.1073/pnas.1713574114.
Der volle Inhalt der QuelleWindheim, Mark, Mark Peggie und Philip Cohen. „Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology“. Biochemical Journal 409, Nr. 3 (15.01.2008): 723–29. http://dx.doi.org/10.1042/bj20071338.
Der volle Inhalt der QuelleTracz, Michał, Ireneusz Górniak, Andrzej Szczepaniak und Wojciech Białek. „E3 Ubiquitin Ligase SPL2 Is a Lanthanide-Binding Protein“. International Journal of Molecular Sciences 22, Nr. 11 (27.05.2021): 5712. http://dx.doi.org/10.3390/ijms22115712.
Der volle Inhalt der QuelleQian, Hao, Ying Zhang, Boquan Wu, Shaojun Wu, Shilong You, Naijin Zhang und Yingxian Sun. „Structure and function of HECT E3 ubiquitin ligases and their role in oxidative stress“. Journal of Translational Internal Medicine 8, Nr. 2 (30.06.2020): 71–79. http://dx.doi.org/10.2478/jtim-2020-0012.
Der volle Inhalt der QuelleDissertationen zum Thema "Ubiquitine ligases"
Lotte, Romain. „Caractérisation des interactions moléculaires entre la GTPase Rac1 et son régulateur HACE1 : perspectives en infectiologie et en cancérologie“. Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4087.
Der volle Inhalt der QuelleThe small GTPase Rac1 plays a key role in various intracellular signaling pathways including cell proliferation. Our laboratory has shown that the CNF1 toxin, produced by pathogenic Escherichia coli, catalyzes the activation of Rac1. We also identified the role of the E3 ubiquitin-ligase HACE1, a tumor suppressor, in the regulation by ubiquitylation of active Rac1. If the activated form of Rac1 is proved to be a target of HACE1, the mode of interaction between these two proteins remains to be define as well as the role of these interactions in infection and cancer. The aim of my work was to characterize the molecular interactions between HACE1 and Rac1. We tested the hypothesis that HACE1 point mutations identified in cancers could interfere with its interaction with Rac1 and its ability to control cell growth. We showed that 13 cancer-associated somatic mutations of HACE1, led to a defective control of cell proliferation. Moreover, the study of these mutations allowed us to identify a group of amino acids, located on the ankyrin-repeats 5 to 7 of HACE1, which controls the interaction of HACE1 with Rac1 and thus its ubiquitylation. We also identified a role for the intermediate domain of HACE1 (MID) in conferring the specificity of association of HACE1 to the active form of Rac1. Ultimately, the characterization of interaction mutants between HACE1 and Rac1 as well as the effect of the CNF1 toxin on this signaling axis will give us more insight on this regulatory pathway in cancer and infection
Fressigne, Lucile, und Lucile Fressigne. „Caractérisation du rôle de deux interacteurs moléculaires du complexe de dégradation des microARN dans la régulation des courts ARN non codants chez le nématode C. elegans“. Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/33960.
Der volle Inhalt der QuelleLes courts ARN non codants tels que les microARN, les piARN et les siARN sont de petites molécules d’ARN de 20 à 30 nucléotides de long qui sont très bien conservées au cours de l’évolution. Elles s’associent à des protéines Argonautes afin de former un complexe effecteur appelé RISC (RNA induced silencing complex). Ces courtes séquences, ne codant pour aucune protéine, agissent comme de puissants régulateurs de l’expression des gènes. De nombreuses évidences supportent qu’une dérégulation du niveau d’expression de ces courts ARN non codants contribue au développement et au maintien de nombreuses pathologies telles que le cancer. De ce fait, il est essentiel pour la cellule de contrôler la stabilité des courts ARN non codants. Le contrôle de la maturation et de la stabilité de ces courts ARN non codants sont des mécanismes peu connus. L’objectif principal de mon doctorat a donc été de mieux comprendre comment le niveau des courts ARN non codants est contrôlé. Afin d’étudier plus en détail comment le niveau des microARN est régulé, nous avons identifié la phosphatase PPM-2 (PP2Cα chez l’humain) et l’E3 ubiquitine ligase HECD-1 (HectD1 chez l’humain) comme étant de nouveaux interacteurs du complexe de dégradation des microARN. Nous avons utilisé des approches de génétique et de biologie moléculaire chez le nématode C. elegans, pour étudier le rôle de la perte de fonction de ppm-2 et d’hecd1 dans la voie des courts ARN non codants. Nos travaux ont montré que la perte de fonction de ppm-2 induit des défauts développementaux qui sont associés à des défauts de la voie des microARN. De plus, l’absence de ppm-2 exacerbe les phénotypes développementaux observés dans des animaux où la voie des microARN est altérée. De manière intéressante, chez le mutant ppm-2, nous avons constaté que d’autres voies de courts ARN non codants, telles que la voie des piARN et celle de l’endosiARN nucléaire, sont affectées. Du point de vue moléculaire, nous avons observé une déstabilisation du niveau d’expression de plusieurs protéines Argonautes dans le mutant ppm-2. En effet, ces dernières sont envoyées à la dégradation par la voie du protéasome seulement chez des animaux mutés pour ppm-2. Concernant l’étude de HECD1, nous avons remarqué que la perte de fonction de cette ubiquitine ligase entrainait une diminution de la progéniture et une létalité embryonnaire attribuable à des défauts dans la gamétogénèse. De plus, nous avons observé une accumulation de miARN fonctionnels chez des animaux mutés pour hecd-1. L’ubiquitine ligase HECD-1 pourrait être impliquée dans la transcription ou la dégradation des miARN. En conclusion, nos résultats suggèrent que PPM-2 permet de contrôler la stabilité des protéines Argonautes en les dirigeant dans une voie alternative de dégradation et que l’ubiquitine ligase HECD-1 pourrait être impliquée dans la régulation des miARN en modulant leur transcription ou leur dégradation. Mes travaux de doctorat nous ont permis de mettre en lumière un nouveau modulateur des courts ARN non codants, PPM-2, qui agit via le contrôle de la régulation des Argonautes. Les avancées de la recherche dans le domaine des courts ARN non codants pourra permettre le développement de nouvelles thérapies.
Small non-coding RNAs, like microRNAs, piRNAs or siRNAs, are small RNA molecules, 20 to 30 nucleotides long that are conserved during evolution. They form an induced silencing complex (RISC) in association with Argonaute proteins to regulate gene expression. Small non-coding RNAs are involved in the regulation of genes implicated in cell proliferation, differentiation and development. Many evidences support that deregulation of the expression level of those small non-coding RNAs contribute to the development of pathologies such as cancer. It is therefore essential for cells to control small non-coding RNA stability. The control of maturation and stability of those small molecules are poorly understood. The main objective of my doctorate was to better understand how the stability of small non-coding RNAs is controlled. In order to study in more detail how miRNAs are regulated, we identified two factors involved in miRNA turnover in C. elegans. We found that the phosphatase PPM-2 (PP2Cα in human) and the E3 ubiquitin ligase HECD-1 (HectD1 in human) are new components of the miRNA degradation complex. Using the power of the nematode C. elegans and molecular biology, we characterized the role of the loss of function of PPM-2 and HECD-1 in small non-coding RNA pathways. Loss of this phosphatase induces developmental defects which are associated with a defect in the miRNA pathway. Genetically, the phosphatase mutant exacerbates the phenotypes that are observed in animals where the miRNA pathway is affected. Interestingly, we further observed that the loss of the phosphatase affects other small non-coding RNA pathways like the piRNA and the siRNA pathways. At the molecular level, we observed a decrease in the expression level of many Argonaute proteins in phosphatase mutant animals. Upon blocking proteasomal degradation with MG132, we noticed that Argonaute proteins are sent to proteasomal degradation in phosphatase mutant animals. Concerning HECD-1, we noticed that the loss of function of the E3 ubiquitin ligase leads to the decrease of progeny and embryonic lethality due to defects in gametogenesis. Moreover, we observed an accumulation of functional miRNAs. This protein can be implicated in transcription or turnover of miRNAs. VIIn conclusion, our data suggest that PPM-2 controls the stability of Argonaute proteins by sending them through an alternative degradation pathway and that HECD-1 could be implicated in miRNA regulation by modulating their transcription or degradation. My doctoral work helped to highlight a new modulator of small non-coding RNAs, PPM-2, which acts through the regulation of Argonaute protein. A better understanding of the mechanisms controlling the stability and the function of these strong regulators will be useful to develop new therapies.
Small non-coding RNAs, like microRNAs, piRNAs or siRNAs, are small RNA molecules, 20 to 30 nucleotides long that are conserved during evolution. They form an induced silencing complex (RISC) in association with Argonaute proteins to regulate gene expression. Small non-coding RNAs are involved in the regulation of genes implicated in cell proliferation, differentiation and development. Many evidences support that deregulation of the expression level of those small non-coding RNAs contribute to the development of pathologies such as cancer. It is therefore essential for cells to control small non-coding RNA stability. The control of maturation and stability of those small molecules are poorly understood. The main objective of my doctorate was to better understand how the stability of small non-coding RNAs is controlled. In order to study in more detail how miRNAs are regulated, we identified two factors involved in miRNA turnover in C. elegans. We found that the phosphatase PPM-2 (PP2Cα in human) and the E3 ubiquitin ligase HECD-1 (HectD1 in human) are new components of the miRNA degradation complex. Using the power of the nematode C. elegans and molecular biology, we characterized the role of the loss of function of PPM-2 and HECD-1 in small non-coding RNA pathways. Loss of this phosphatase induces developmental defects which are associated with a defect in the miRNA pathway. Genetically, the phosphatase mutant exacerbates the phenotypes that are observed in animals where the miRNA pathway is affected. Interestingly, we further observed that the loss of the phosphatase affects other small non-coding RNA pathways like the piRNA and the siRNA pathways. At the molecular level, we observed a decrease in the expression level of many Argonaute proteins in phosphatase mutant animals. Upon blocking proteasomal degradation with MG132, we noticed that Argonaute proteins are sent to proteasomal degradation in phosphatase mutant animals. Concerning HECD-1, we noticed that the loss of function of the E3 ubiquitin ligase leads to the decrease of progeny and embryonic lethality due to defects in gametogenesis. Moreover, we observed an accumulation of functional miRNAs. This protein can be implicated in transcription or turnover of miRNAs. VIIn conclusion, our data suggest that PPM-2 controls the stability of Argonaute proteins by sending them through an alternative degradation pathway and that HECD-1 could be implicated in miRNA regulation by modulating their transcription or degradation. My doctoral work helped to highlight a new modulator of small non-coding RNAs, PPM-2, which acts through the regulation of Argonaute protein. A better understanding of the mechanisms controlling the stability and the function of these strong regulators will be useful to develop new therapies.
Perron, Tiphaine. „Caractérisation d'un nouveau mécanisme de régulation de la E3 ubiquitine ligase WWP1 impliquée dans la tumorigenèse“. Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS250.
Der volle Inhalt der QuelleUbiquitination plays a crutial role in cellular homeostasis by regulating the function and/or the degradation of proteins. E3 ubiquitin ligases are key component of the ubiquitination reaction by transferring the ubiquitin molecule on the substrate. Among E3 ubiquitin ligases, WWP1 is frequently amplified in numerous cancers, such as breast cancers, and associated with poor prognosis. Consistent with these observations, WWP1 stimulates cell proliferation and survival and inhibits apoptosis. My thesis works led to identify the protein CYYR1, which as to date no know cellular function, as a novel regulator for the E3 ubiquitin ligase WWP1. We show that CYYR1 interacts with WWP1 in a PY/WW-dependent manner at late endosomes and that this interaction leads to induce the K63-linked auto-polyubiquitination of WWP1 resulting to its lysosomal degradation. Furthermore, we observe that the UIM-containing protein ANKRD13A binds CYYR1 and the polyubiquitinated form of WWP1 and is implicated in CYYR1-mediated WWP1 degradation. Moreover, we show that CYYR1 limits breast cancer anchorage-dependent an independent cell growth via its PY motifs. Finally, we highlight that CYYR1 expression is decreased in breast cancer and is associated with beneficial clinical outcome. Taken together, my thesis works describe a novel mechanism of regulation for the E3 ubiquitin ligase WWP1 implicated in tumorigenesis
Basu, Shrivastava Meenakshi. „Régulation de la stabilité de NFATc3 par SUMO et les E3 ubiquitine-ligases Trim39 et Trim17“. Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTT043.
Der volle Inhalt der QuelleNFAT (Nuclear factor of activated T cells) transcription factors play important physiological roles in the development and function of many organs, notably in the immune system and nervous system. As a consequence, their dysregulation has been implicated in various human diseases such as cancer, neurodegenerative diseases, and auto-immune diseases. The regulation of NFAT activity by calcium-dependent nuclear-cytoplasmic shuttling has been extensively studied. In contrast, the regulation of NFAT protein level by the ubiquitin-proteasome system is still poorly understood. However, NFATs are short-lived proteins and regulation of their stability is critical for controlling their activity.In a previous study, my group has shown that the E3 ubiquitin-ligase Trim17 binds NFATc3 but does not promote its ubiquitination and rather stabilizes it. Preliminary results suggested that Trim39, a partner of Trim17, might be an E3 ubiquitin-ligase for NFATc3 and that SUMOylation of NFATc3 might modulate its stability. Therefore, the goal of my PhD was to understand the mechanisms through which Trim39, Trim17, and SUMO regulate the stability of NFATc3.During my PhD, I have characterized Trim39 as an E3 ubiquitin-ligase of NFATc3. Indeed, my results indicate that overexpression of Trim39, but not its inactive mutant, induces the ubiquitination of NFATc3 in cells. In contrast, silencing of endogenous Trim39 decreases the ubiquitination level of NFATc3. Recombinant Trim39 directly induces the ubiquitination of NFATc3 in vitro. Moreover, overexpression of Trim39 decreases the protein levels of NFATc3 whereas the silencing of Trim39 increases it. I have also shown that Trim17, which can bind Trim39, inhibits Trim39-mediated ubiquitination of NFATc3, both in cells and in vitro. Trim17 acts by both reducing the intrinsic E3 ubiquitin-ligase activity of Trim39 and by preventing the interaction between NFATc3 and Trim39. Furthermore, I found that a SUMOylation-deficient mutant of NFATc3 is less ubiquitinated and more stable than the wild type NFATc3, suggesting that SUMOylation of NFATc3 is important for its ubiquitination and degradation. Importantly, I identified one SUMO interacting motif (SIM) in the sequence of Trim39 through which Trim39 binds SUMO2 polymers via one of these SIMs. Mutation of this SIM in Trim39 or SUMOylation consensus sites in NFATc3 decreased the interaction between Trim39 and NFATc3, and the ubiquitination of NFATc3 mediated by Trim39. These results strongly suggest that Trim39 binds and ubiquitinates preferentially the SUMOylated forms of NFATc3 and therefore acts as a SUMO-targeted E3 ubiquitin-ligase (STUbL) for NFATc3. Finally, we have measured the impact of these mechanisms on the physiological function of NFATc3. I first found that Trim39 decreases the transcriptional activity of NFATc3. Furthermore, using primary cultures of cerebellar granule neurons as a model, we have shown that the mutation of the SUMOylation sites of NFATc3 and silencing of endogenous Trim39 enhances neuronal apoptosis, probably by stabilizing the NFATc3 protein. Taken together, these data indicate that Trim39 modulates neuronal apoptosis by acting as a STUbL for NFATc3 and by controlling its stability
Nassar, Joelle. „Caractérisation de la fonction de OBI1, une E3 ubiquitine ligase, dans la réplication de l'ADN“. Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTT039.
Der volle Inhalt der QuelleCell division is one of the most complex processes a cell undergoes. For this to happen properly, the genetic material stored in a cell must be faithfully copied or replicated. During this process, DNA replication is initiated at pre-defined sites in the genome, called "origins of replication". The activation of these origins is highly regulated, as a dysfunction in origin activity is linked to several human pathologies. Several proteins have been found at replication origins, but none of them explain how to be activated origins are recognized and selected. Our research group aims to understand how DNA replication origins are regulated in metazoan cells, to this aim, a proteomic approach was performed to define the interactome of human replication origins. Our goal was to identify new factors that could be involved in replication origin regulation. Using this methodology, a novel E3 ubiquitin ligase, named OBI1 (for ORC-ubiquitin-ligase-1), was identified prior to my arrival in the laboratory. OBI1 binds the origin recognition complex (ORC complex) and my project aimed at further characterizing the role of this new protein in DNA replication. Our experimental strategy used two different model systems: an in-vivo model based on human cells in culture, and an in-vitro DNA replication system derived from Xenopus eggs.Our analyses in human cells revealed that OBI1 was a crucial gene involved in cellular proliferation, this observation was later attributed to OBI1’s role in DNA replication and more specifically, to replication origin activation. Indeed, OBI1 knockdown resulted in a deficient origin firing and a decrease in the chromatin recruitment of factors involved in origin firing. A further functional analysis showed that OBI1 multiubiquitylates two subunits of the ORC complex, ORC3 and ORC5. This ubiquitylation was directly linked to OBI1’s role in origin firing, after the over-expression of non-ubiquitylable ORC3/5 mutants yielded similar results to OBI1’s knock down. Altogether, our results demonstrated that OBI1 encoded for a protein essential for origin activation, and allowed us to propose its main role: by multiubiquitylating a subset of the ORC complex, OBI1 could select the replication origins to be activated amongst all the potential replication origins set in G1 phase of the cell cycle. After this set of experiments, now published, we wanted to address the mechanistic impact of the multiubiquitylation of ORC on origin activation. Our preliminary experiments suggest a role of the histone acetyl-transferase (HAT) GCN5/KAT2A in the “OBI1 pathway”In the second part of my project, we used the in vitro DNA replication system, based on Xenopus laevis egg extracts, to study the role of OBI1 and ubiquitylation in origin activation. Our in-vitro analyses confirmed the conservation of OBI1 in Xenopus Laevis and its recruitment to the chromatin during DNA replication. We showed that de novo ubiquitylation takes place on chromatin during origin activation. Moreover, using E1 inhibitors, we found that active ubiquitylation is important for efficient origin firing. Interestingly, our loss of function experiments suggested that OBI1’s impact on origin activation could defer in early development when compared to somatic-like conditions.Taken together, the discovery of this new replication initiation factor provided key information on the role of ubiquitylation in general and OBI1 in particular on origin activation and selection. Such selection could participate as well in the regulation of the timing of DNA replication
Depaux, Arnaud. „Régulation des complexes d'ubiquitinylation et de sumoylation par la ligase E3 hSIAH2“. Paris 7, 2006. http://www.theses.fr/2006PA077094.
Der volle Inhalt der QuelleAfter synthesis, proteins are targeted to post-translational modifications such as acetylation, phosphorylation or ubiquitination. These mechanisms regulate their function, stability, localization or interaction with partners. Modification process by ubiquitin or sumo named ubiquitination or sumoylation respectively involve complexes with similar organization but compose of different enzymes. Their organization relies on Sumo or ubiquitin activating El enzyme, transferring E2-ligase and E3-ligase or sub-complex conferring the substrate specific récognition. El-ligase is unique for each complex, whereas E2 and E3-ligases are multiple. Among E3-ligase families, RING Finger protein family only has been involved in both modifications complexes. Two human homologs of Drosophila Seven In Absentia (hSIAHl et hSIAH2), belong to RING Finger E3-ligase family. In a yeast two hybrid assay, we have identified new SIAH interacting proteins. Their characterization has been the purpose of my PhD project. We have characterized partners implicated in both ubiquitination (ubiquitin, Ubc5 or hSIAH) and sumoylation (Sumo, Ubc9 and PIAS) pathways. In a first attempt, I have demonstrated that hSIAH proteins can form homo- or hetero-dimers. Dimerization régulates their stability via a proteasome dependent degradation. I have also demonstrated that hSIAH2 catalyzes the proteasome dependent degradation of PIAS1, a sumo E3-ligase. Altogether this study evidences an important rôle for hSIAH2 in the regulation of the stability of ubiquitination and sumolation complexes
Lotte, Romain. „Caractérisation des interactions moléculaires entre la GTPase Rac1 et son régulateur HACE1 : perspectives en infectiologie et en cancérologie“. Thesis, Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4087/document.
Der volle Inhalt der QuelleThe small GTPase Rac1 plays a key role in various intracellular signaling pathways including cell proliferation. Our laboratory has shown that the CNF1 toxin, produced by pathogenic Escherichia coli, catalyzes the activation of Rac1. We also identified the role of the E3 ubiquitin-ligase HACE1, a tumor suppressor, in the regulation by ubiquitylation of active Rac1. If the activated form of Rac1 is proved to be a target of HACE1, the mode of interaction between these two proteins remains to be define as well as the role of these interactions in infection and cancer. The aim of my work was to characterize the molecular interactions between HACE1 and Rac1. We tested the hypothesis that HACE1 point mutations identified in cancers could interfere with its interaction with Rac1 and its ability to control cell growth. We showed that 13 cancer-associated somatic mutations of HACE1, led to a defective control of cell proliferation. Moreover, the study of these mutations allowed us to identify a group of amino acids, located on the ankyrin-repeats 5 to 7 of HACE1, which controls the interaction of HACE1 with Rac1 and thus its ubiquitylation. We also identified a role for the intermediate domain of HACE1 (MID) in conferring the specificity of association of HACE1 to the active form of Rac1. Ultimately, the characterization of interaction mutants between HACE1 and Rac1 as well as the effect of the CNF1 toxin on this signaling axis will give us more insight on this regulatory pathway in cancer and infection
El, Hachem Najla. „Rôle pro-tumorigénique de HACE1 dans le mélanome“. Electronic Thesis or Diss., Université Côte d'Azur (ComUE), 2017. http://www.theses.fr/2017AZUR4035.
Der volle Inhalt der QuelleMelanoma incidence has considerably increased over the last thirty years, with a doubling every ten years. Melanoma accounts for only 5% of cutaneous cancers but causes more than 80% of deaths, which is a major public health problem. Indeed, this tumor is extremely aggressive and has a high metastatic potential. After the onset of metastases, the prognosis becomes highly unfavorable. Despite major therapeutic advances, many patients are still refractory to these new treatments. Understanding the mechanisms involved in the development of this tumor and the identification of new therapies remain a major issue. The sequencing of exomes led to the identification of a mutation in the RAC1 gene (P29S) constituting one of the most frequent somatic mutations in melanoma (after the BRAFV600, NRASQ61 and NF1 mutations). RAC1 is a small GTPase that is involved in several key cellular processes. Under physiological conditions, the activity of RAC1 is mainly controlled by GTPase activating proteins (GAPs) and Nucleotide Exchange (GEF) exchange factors. GAPs and GEFs control the level of RAC1- GTP and thus regulate its activity. The activity of RAC1 is also dependent on its protein level of expression which is controlled by E3 ubiquitin ligases, including HACE1. HACE1 is considered a tumor suppressor. Unexpectedly, our data clearly show that HACE1 promotes migratory and tumorigenic properties of melanoma cells. Indeed, inhibition of HACE1 alters migration of melanoma cells in vitro, as well as in vivo pulmonary colonization in mice. Transcriptomic analysis of 4 melanoma cell lines demonstrated that HACE1 suppression inhibits ITGAV and ITGB1 expression
Delance, Cécile. „Analyse des mécanismes assurant la robustesse d’un événement de transdifférenciation : rôle de l’ubiquitine ligase E3 SEL-10“. Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ027.
Der volle Inhalt der QuelleDifferentiated cells can change their cellular fate induced or naturally. In order to understand the mechanisms controlling reprogramming processes, our laboratory is studying the natural change in identity (or transdifferentiation, Td) of a rectal epithelial cell (named Y) and motor neuron (named PDA) in Caenorhabditis elegans.Preliminary work has shown that there is a synergy between histone modifications (jmjd-3.1 and wdr-5.1) and ubiquitination (sel-10). SEL-10 is an E3 ubiquitin ligase with a Fbox domain and WD40 repeat domain.In this study, we highlight: i) the Fbox domain involvement in the Td, indications about the intracellular localization of SEL-10 and an unexpected role of the proteasome within TD. ii) a role of SEL-10 in the robustness of the Td. iii) sel-10, jmjd-3.1 and wdr-5.1 act on gene transcription in transdifferentiation. This one was tested by smFISH and allowed the characterization of the cog-1 transdifferentiation marker expression pattern during redifferentiation
Burande, Clara. „Identification des substracts d'ASB2alpha, la sous-unité de spécificité d'une E3 ubiquitine ligase impliquée dans la différenciation hématopoïétique“. Toulouse 3, 2010. http://thesesups.ups-tlse.fr/1639/.
Der volle Inhalt der QuelleThe ubiquitin-proteasome system is a central mechanism for controlled proteolysis that regulates numerous cellular processes in eukaryotes. E3 ubiquitin ligases are responsible for the specificity of this system. They provide platforms for binding specific substrates thereby coordinating their ubiquitination and subsequent degradation by the proteasome. We have developed a global proteomic strategy to identified E3 ubiquitin ligase substrates targeted to proteasomal degradation. The proof of principle of this strategy is provided by our results highlighting FLNa and FLNb as substrates of the ASB2alpha E3 ubiquitin ligase that is involved in hematopoiesis. Furthermore, we have shown that FLNc, the third member of the filamin family, is also a target of ASB2alpha. This study provides a new strategy for the identification of E3 ubiquitin ligase substrates that have to be degraded in physiologically relevant settings. We have also demonstrated that ASB2alpha, through degradation of FLNs, can regulate integrin-dependent cell motility. Moreover, structural and cell biology studies have unraveled the domain of ASB2α that is involved in the recruitment of its substrate, FLNa. This study has provided an original strategy to identify E3 ubiquitin ligase substrates targeted to degradation. Furthermore, our work has contributed to the understanding of the function and mechanisms of action of ASB2α in hematopoietic cells
Bücher zum Thema "Ubiquitine ligases"
Inuzuka, Hiroyuki, und Wenyi Wei. SCF and APC E3 Ubiquitin Ligases in Tumorigenesis. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05026-3.
Der volle Inhalt der QuelleInuzuka, Hiroyuki. SCF and APC E3 ubiquitin ligases in tumorigenesis. Cham: Springer, 2014.
Den vollen Inhalt der Quelle findenDi, Napoli Mario, und Wójcik Cezary 1968-, Hrsg. The ubiquitin proteasome system in the central nervous system: From physiology to pathology : 2008 update. Hauppauge, NY: Nova Science, 2009.
Den vollen Inhalt der Quelle findenHyŏmnyŏktan, Koryŏ Taehakkyo Sanhak. E3, ubiquitin ligase chŏhaeje rŭl wihan E1-E2-E3-substrate cognate pair network chŏngnip kisul kaebal kwa i rŭl iyong han tanangsŏng sinjŭnghugun (ADPKD) ch'iryoje kaebal yŏn'gu =: Study on E1-E2-E3-substrate cognate pair network for E3 ligase inhibitor and application. [Seoul]: Pogŏn Pokchi kajokpu, 2008.
Den vollen Inhalt der Quelle findenBolanos-Garcia, Victor M., Julien Licchesi, Heike Laman und Fumiyo Ikeda, Hrsg. E3 Ubiquitin Ligases: From Structure to Physiology. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-883-3.
Der volle Inhalt der QuelleAng, Xiaolu Lulu Lim. Substrates of the SCF-beta-TRCP E3 ubiquitin ligase complex: Mechanisms of recognition and delivery to the proteasome. 2009.
Den vollen Inhalt der Quelle findenGroettrup, Marcus. Conjugation and Deconjugation of Ubiquitin Family Modifiers. Springer, 2010.
Den vollen Inhalt der Quelle findenGroettrup, Marcus. Conjugation and Deconjugation of Ubiquitin Family Modifiers. Springer, 2016.
Den vollen Inhalt der Quelle findenConjugation And Deconjugation Of Ubiquitin Family Modifiers. Springer, 2010.
Den vollen Inhalt der Quelle findenHarris, Edward T. Ubiquitin Ligase: New Insights, Emerging Roles and Clinical Implications. Nova Science Publishers, Incorporated, 2017.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Ubiquitine ligases"
Proske, Uwe, David L. Morgan, Tamara Hew-Butler, Kevin G. Keenan, Roger M. Enoka, Sebastian Sixt, Josef Niebauer et al. „E3 Ubiquitin Ligases“. In Encyclopedia of Exercise Medicine in Health and Disease, 269. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-540-29807-6_2315.
Der volle Inhalt der QuelleDobrodziej, Jennifer, Hanqing Dong, Kurt Zimmermann und Christopher M. Hickey. „Evaluating Ligands for Ubiquitin Ligases Using Affinity Beads“. In Targeted Protein Degradation, 59–75. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1665-9_4.
Der volle Inhalt der QuelleBeasley, Steven A., Yaya Wang und Donald E. Spratt. „RBR E3 Ubiquitin Ligases“. In Encyclopedia of Signaling Molecules, 4529–37. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-67199-4_101592.
Der volle Inhalt der QuelleZhang, Hui. „Cullin Ubiquitin E3 Ligases“. In Encyclopedia of Cancer, 1–8. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-27841-9_7191-1.
Der volle Inhalt der QuelleBeasley, Steven A., Yaya Wang und Donald E. Spratt. „RBR E3 Ubiquitin Ligases“. In Encyclopedia of Signaling Molecules, 1–9. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4614-6438-9_101592-1.
Der volle Inhalt der QuelleZhang, Hui. „Cullin Ubiquitin E3 Ligases“. In Encyclopedia of Cancer, 1245–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-46875-3_7191.
Der volle Inhalt der QuelleBurger, Angelika M., und Arun K. Seth. „Ubiquitin Ligases and Cancer“. In Modulation of Protein Stability in Cancer Therapy, 1–18. New York, NY: Springer US, 2009. http://dx.doi.org/10.1007/978-0-387-69147-3_1.
Der volle Inhalt der QuelleSchomburg, Dietmar, und Dörte Stephan. „Ubiquitin-calmodulin ligase“. In Enzyme Handbook 17, 321–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58969-0_75.
Der volle Inhalt der QuelleWestermann, Frank. „Ubiquitin Ligase SCF-Skp2“. In Encyclopedia of Cancer, 1–3. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27841-9_6086-3.
Der volle Inhalt der QuelleWestermann, Frank. „Ubiquitin Ligase SCF-Skp2“. In Encyclopedia of Cancer, 4709–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-46875-3_6086.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Ubiquitine ligases"
Fefilova, E. A., und O. Yu Shuvalov. „THE EFFECT OF MDM2 UBIQUITIN LIGASE ON ENERGY METABOLISM ENZYMES IN CELL MODELS OF HUMAN NON-SMALL CELL LUNG CANCER“. In X Международная конференция молодых ученых: биоинформатиков, биотехнологов, биофизиков, вирусологов и молекулярных биологов — 2023. Novosibirsk State University, 2023. http://dx.doi.org/10.25205/978-5-4437-1526-1-380.
Der volle Inhalt der QuelleZhi, Xu, Dong Zhao, Zhongmei Zhou und Ceshi Chen. „Abstract 213: RNF126 E3 ubiquitin ligase targets p21cipfor ubiquitin-mediated degradation“. In Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-213.
Der volle Inhalt der QuelleYoshida, Yukiko, Koji Matsuoka, Tomoki Chiba, Toshiaki Suzuki, Keiji Tanaka und Tadashi Tai. „N-GLYCANS ARE RECOGNIZED BY E3 UBIQUITIN-LIGASE“. In XXIst International Carbohydrate Symposium 2002. TheScientificWorld Ltd, 2002. http://dx.doi.org/10.1100/tsw.2002.430.
Der volle Inhalt der QuelleLi, Hui, Lei Jia, Fan Yan und Pengbo Zhou. „Abstract 4733: Dysregulation of CUL4A and CUL4B ubiquitin ligases in lung cancer“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-4733.
Der volle Inhalt der QuelleTsai, M. J., R. Rayner, L. Chafin, D. Farkas, J. Adair, R. K. Mallampalli, S. Kim, E. Cormet-Boyaka und J. D. Londino. „Influenza Reduces Ubiquitin E3 Ligase March10 to Inhibit Ciliary Function“. In American Thoracic Society 2023 International Conference, May 19-24, 2023 - Washington, DC. American Thoracic Society, 2023. http://dx.doi.org/10.1164/ajrccm-conference.2023.207.1_meetingabstracts.a1257.
Der volle Inhalt der QuelleLeboeuf, Dominique, Timofei Zatsepin, Daniel G. Anderson und Konstantin Piatkov. „Abstract 3131: Ubiquitin ligases: a new target for RNAi therapy of hepatocellular carcinoma“. In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3131.
Der volle Inhalt der QuelleCole, Alexander J., Kristie-Ann Dickson, Roderick Clifton-Bligh und Deborah J. Marsh. „Abstract 3538: Targeting the E3 ubiquitin ligase RNF20 in ovarian cancer“. In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3538.
Der volle Inhalt der Quelle„Functional roles of the E3 ubiquitin ligase HYD in Drosophila tissues“. In Bioinformatics of Genome Regulation and Structure/ Systems Biology. institute of cytology and genetics siberian branch of the russian academy of science, Novosibirsk State University, 2020. http://dx.doi.org/10.18699/bgrs/sb-2020-012.
Der volle Inhalt der QuelleNelson, David E., und Heike Laman. „Abstract 2961: Spatiotemporal regulation of the SCF ubiquitin ligase component, Fbxo7“. In Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2961.
Der volle Inhalt der QuelleHo, King Ching, und Xiaolong Yang. „Abstract 5097: ITCH E3 ubiquitin ligase regulates LATS1 tumor suppressor stability“. In Proceedings: AACR 101st Annual Meeting 2010‐‐ Apr 17‐21, 2010; Washington, DC. American Association for Cancer Research, 2010. http://dx.doi.org/10.1158/1538-7445.am10-5097.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Ubiquitine ligases"
Royer, Lacey. Cul3 Ubiquitin Ligase and Ctb73 Protein Interactions. Portland State University Library, Januar 2014. http://dx.doi.org/10.15760/honors.48.
Der volle Inhalt der QuelleZhang, Hui. The Role of Ubiquitin E3 Ligase SCFSKP2 in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, Februar 2005. http://dx.doi.org/10.21236/ada435854.
Der volle Inhalt der QuelleDavidge, Brittney. The Cul3 Ubiquitin Ligase: An Essential Regulator of Diverse Cellular Processes. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.5666.
Der volle Inhalt der QuelleChen, Ceshi. The Oncogenic Role of WWP1 E3 Ubiquitin Ligase in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, Mai 2011. http://dx.doi.org/10.21236/ada549835.
Der volle Inhalt der QuelleZhang, Hui. The Role of Ubiquitin E3 Ligase SCF-SKP2 in Prostate Cancer Development. Fort Belvoir, VA: Defense Technical Information Center, Februar 2007. http://dx.doi.org/10.21236/ada470865.
Der volle Inhalt der QuelleMitchell, Jennifer. Characterization of Functional Domains of Cul3, an E3 Ubiquitin Ligase, Using Chimeric Analysis. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1969.
Der volle Inhalt der QuelleChen, Xiaowei. BRCC36, A Novel Subunit of a BRCA1 E3 Ubiquitin Ligase Complex: Candidates for BRCA3. Fort Belvoir, VA: Defense Technical Information Center, Juni 2005. http://dx.doi.org/10.21236/ada440291.
Der volle Inhalt der QuelleSpiegelman, Vladimir S. The Role of Beta-TrCP Ubiquitin Ligase Receptor in the Development of Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, Juni 2006. http://dx.doi.org/10.21236/ada484616.
Der volle Inhalt der QuelleChen, Xiaowei. BRCC36, a Novel Subunit of a BRCA1 E3 Ubiquitin Ligase Complex: Candidates for BRCA3. Fort Belvoir, VA: Defense Technical Information Center, Juni 2008. http://dx.doi.org/10.21236/ada486006.
Der volle Inhalt der QuelleHarper, Jeffrey. Regulation of NF (kappa) B-Dependent Cell Survival Signals Through the SCF (Slimb) Ubiquitin Ligase Pathway. Fort Belvoir, VA: Defense Technical Information Center, Juli 2000. http://dx.doi.org/10.21236/ada395543.
Der volle Inhalt der Quelle