Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Turbulent shear layers“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Turbulent shear layers" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Turbulent shear layers"
Johnson, Blair A., und Edwin A. Cowen. „Turbulent boundary layers absent mean shear“. Journal of Fluid Mechanics 835 (27.11.2017): 217–51. http://dx.doi.org/10.1017/jfm.2017.742.
Der volle Inhalt der QuelleThole, K. A., und D. G. Bogard. „High Freestream Turbulence Effects on Turbulent Boundary Layers“. Journal of Fluids Engineering 118, Nr. 2 (01.06.1996): 276–84. http://dx.doi.org/10.1115/1.2817374.
Der volle Inhalt der QuelleFontaine, Ryan A., Gregory S. Elliott, Joanna M. Austin und Jonathan B. Freund. „Very near-nozzle shear-layer turbulence and jet noise“. Journal of Fluid Mechanics 770 (27.03.2015): 27–51. http://dx.doi.org/10.1017/jfm.2015.119.
Der volle Inhalt der QuellePei, Binbin, FangBo Li, Zhengyuan Luo, Liang Zhao und Bofeng Bai. „Dynamics of mixing flow with double-layer density stratification: Enstrophy and vortical structures“. Physics of Fluids 34, Nr. 10 (Oktober 2022): 104107. http://dx.doi.org/10.1063/5.0121554.
Der volle Inhalt der QuelleSleath, J. F. A. „Coastal Bottom Boundary Layers“. Applied Mechanics Reviews 48, Nr. 9 (01.09.1995): 589–600. http://dx.doi.org/10.1115/1.3023147.
Der volle Inhalt der QuelleWatanabe, Tomoaki, Carlos B. da Silva und Koji Nagata. „Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence“. Journal of Fluid Mechanics 875 (18.07.2019): 321–44. http://dx.doi.org/10.1017/jfm.2019.462.
Der volle Inhalt der QuelleMuppidi, Suman, und Krishnan Mahesh. „Direct numerical simulations of roughness-induced transition in supersonic boundary layers“. Journal of Fluid Mechanics 693 (06.01.2012): 28–56. http://dx.doi.org/10.1017/jfm.2011.417.
Der volle Inhalt der QuelleGan, X., M. Kilic und J. M. Owen. „Flow Between Contrarotating Disks“. Journal of Turbomachinery 117, Nr. 2 (01.04.1995): 298–305. http://dx.doi.org/10.1115/1.2835659.
Der volle Inhalt der QuelleBrown, Garry L., und Anatol Roshko. „Turbulent shear layers and wakes“. Journal of Turbulence 13 (Januar 2012): N51. http://dx.doi.org/10.1080/14685248.2012.723805.
Der volle Inhalt der QuelleCARSTENSEN, STEFAN, B. MUTLU SUMER und JØRGEN FREDSØE. „Coherent structures in wave boundary layers. Part 1. Oscillatory motion“. Journal of Fluid Mechanics 646 (08.03.2010): 169–206. http://dx.doi.org/10.1017/s0022112009992825.
Der volle Inhalt der QuelleDissertationen zum Thema "Turbulent shear layers"
Abu-Hijleh, Bassam Abdel-Kareem A.-R. „Structure of supersonic turbulent reattaching shear layers /“. The Ohio State University, 1990. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487676261012304.
Der volle Inhalt der QuelleLuo, Jian Yang. „Calculation of turbulent shear layers over highly curved surfaces“. Thesis, Imperial College London, 1989. http://hdl.handle.net/10044/1/11500.
Der volle Inhalt der QuelleSreedhar, Madhu K. „Large eddy simulation of turbulent vortices and mixing layers“. Diss., This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-06062008-163324/.
Der volle Inhalt der QuelleWang, Kan. „Computational investigation of aero-optical distortions by turbulent boundary layers and separated shear layers“. Thesis, University of Notre Dame, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3578995.
Der volle Inhalt der QuelleAero-optical distortions are detrimental to airborne optical systems. To study distortion mechanisms, compressible large-eddy simulations are performed for a Mach 0.5 turbulent boundary layer and a separated shear layer over a cylindrical turret with and without passive control in the upstream boundary layer. Optical analysis is carried out using ray tracing based on the computed density field and Gladstone-Dale relation.
In the flat-plate boundary layer, the effects of aperture size, Reynolds number, small-scale turbulence, different flow regions and beam elevation angle are examined, and the underlying flow physics is analyzed. Three momemtum-thickness Reynolds numbers, Re&thetas; = 875, 1770 and 3550, are considered. It is found that the level of optical distortions decreases with increasing Reynolds number within the Reynolds number range considered. The contributions from the viscous sublayer and buffer layer are small, while the wake region plays a dominant role followed by the logarithmic layer. By low-pass filtering the fluctuating density field, it is shown that small-scale turbulence is optically inactive. Consistent with previous experimental findings, the distortion magnitude is dependent on the propagation direction due to anisotropy of the boundary-layer vortical structures. Density correlations and length scales are analyzed to understand the elevation-angle dependence and its relation to turbulence structures. The applicability of Sutton's linking equation to boundary-layer flows is examined, and excellent agreement between linking equation predictions and directly integrated distortions is obtained when the density length scale is appropriately defined.
The second case studied involves a separated shear layer over a cylindrical turret with a flat window, with inflow from a flat-plate boundary layer with and without passive control devices. The flow and optical results show reasonable agreement with experimental data for the baseline case without control. Aperture size effect, frequency spectra of OPD and two-point spatial correlations of OPD are investigated. The similarities and differences of distortion characteristics compared to those induced by turbulent boundary layers are discussed. The distortions by a separated shear layer are much larger in magnitude and spatially less homogeneous than those induced by an attached boundary layer. It is found that pressure fluctuations are significant and play a dominant role in inducing density fluctuations and associated optical distortions in a separated shear layer, in contrast to the dominant role of temperature fluctuations in a turbulent boundary layer. When passive control is applied using a row of thin and tall pins in the upstream boundary layer, the numerical results confirm key experimental findings. The flow above the optical window is characterized by two distinct shear layers, whose combined effect leads to a significant reduction of density fluctuation magnitude in the main shear layer and associated optical distortions compared to the uncontrolled flow with a single strong shear layer.
Hipp, Hans Christoph 1959. „Numerical investigation of mode interaction in free shear layers“. Thesis, The University of Arizona, 1988. http://hdl.handle.net/10150/276871.
Der volle Inhalt der QuelleSchmidt, Martin Arnold. „Microsensors for the measurement of shear forces in turbulent boundary layers“. Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14781.
Der volle Inhalt der QuelleCiochetto, David S. „Analysis of Three Dimensional Turbulent Shear Flow Experiments with Respect to Algebraic Modeling Parameters“. Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36808.
Der volle Inhalt der QuelleMaster of Science
McGinnis, David C. „Aero Optic Characterization of Highly Turbulent Free Shear Layers Over a Backward Facing Step“. University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1367928372.
Der volle Inhalt der QuelleMartin, Martin Laura. „Numerical study of sound scattering by isolated elliptic vortices and turbulent jet shear layers“. Electronic Thesis or Diss., Ecully, Ecole centrale de Lyon, 2024. http://www.theses.fr/2024ECDL0025.
Der volle Inhalt der QuelleThis study is consecrated to the scattering of acoustic waves by isolated vortices and turbulent jet shear layers. When the acoustic waves pass through a volume of turbulence, the fluctuations in the turbulence change the propagation direction of the waves. In addition, if the turbulence evolves in time, there is also a change in the sound spectral content, causing spectral broadening. In order to better understand these phenomena, a series of numerical analyses have been carried out. For this purpose, a code provided by Siemens has been used where the Linearised Euler Equations are solved by the Discontinuous Galerkin method. It simulates the acoustic wave propagation over a base flow defined by the user. To take into account the spectral broadening, the code has been modified to be able to interpolate time-dependent external data in time and space onto the base flow. The interpolation has been tested by different convergence studies of the pressure field scattered by a 2-dimensional mixing layer. Other features have been also implemented to cope with the numerical instability waves caused by the inhomogeneity of the base flow. Initially, the scattering of acoustic waves caused by an isolated Kirchhoff elliptic vortex is investigated. When the vortex is fixed in space, the study focuses on the effects of the ellipticity, the orientation of the vortex regarding the direction of propagation of the incident acoustic wave, the tangential velocity of the vortex and its size regarding the acoustic waves. The scattering has been investigated also when the vortex is convected. Special attention has been devoted to its ellipticity and the velocity convection. The results show that the ellipticity and especially the orientation of the vortex play a key role in the scattering. Finally, the study of the scattering of sound by turbulent jet shear layers is conducted, where the acoustic source is located at the jet axis. For that, the data interpolated in the base flow of the DGM code belong to an external database of round jets simulated by LES. These jets have Mach numbers varying between 0.3 and 1.3, and their temperature is 1, 1.5 or 2.25 times the ambience temperature. These parameters modify the properties of the turbulent fluctuations. Therefore, the spectral content of these fluctuations is compared between the jets. After that, the pressure fields obtained with mean base flows and turbulent base flows, and the difference between them are presented. Their directivities are also discussed, as well as the spectra of the acoustic field. The spectra are characterized by a central tone at the source frequency and two lateral lobes. They are symmetric for high Mach numbers. The position of the lateral lobes shifts closer to the central tone and their levels increase with the jet temperature for jets with constant Mach number, which can be explained by the changes undergone by the turbulence fluctuations
Miller, Ronald J. „A Study of Passive Scalar Mixing in Turbulent Boundary Layers using Multipoint Correlators“. Thesis, Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7574.
Der volle Inhalt der QuelleBücher zum Thema "Turbulent shear layers"
Smits, Alexander J. Turbulent shear layers in supersonic flow. 2. Aufl. New York: Springer, 2011.
Den vollen Inhalt der Quelle findenJean-Paul, Dussauge, Hrsg. Turbulent shear layers in supersonic flow. 2. Aufl. New York: Springer, 2006.
Den vollen Inhalt der Quelle findenJean-Paul, Dussauge, Hrsg. Turbulent shear layers in supersonic flow. Woodbury, N.Y: American Institute of Physics, 1996.
Den vollen Inhalt der Quelle findenPapamoschou, Dimitri. Structure of the compressible turbulent shear layer. Washington, D. C: American Institute of Aeronautics and Astronautics, 1989.
Den vollen Inhalt der Quelle findenY, Chen J., Limley J. L und Lewis Research Center. Institute for Computational Mechanics in Propulsion., Hrsg. Second order modeling of boundary-free turbulent shear flows. Cleveland, Ohio: NASA Lewis Research Center, Institute for Computational Mechanics in Propulsion, 1991.
Den vollen Inhalt der Quelle findenShau, Y. R. Experimental study of spreading rate enhancement of high Mach number turbulent shear layers. Washington, D. C: American Institute of Aeronautics and Astronautics, 1989.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Improved two-equation k - [omega] turbulence models for aerodynamic flows. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.
Den vollen Inhalt der Quelle findenCenter, Ames Research, Hrsg. Improved two-equation k - [omega] turbulence models for aerodynamic flows. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1992.
Den vollen Inhalt der Quelle findenAdair, Desmond. Characteristics of merging shear layers and turbulent wakes of a multi-element airfoil. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Den vollen Inhalt der Quelle findenBrown, Douglas L. Computation of turbulent boundary layers employing the defect wall-function method. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1994.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Turbulent shear layers"
Gibson, M. M. „Boundary Layers“. In Turbulent Shear Flows 4, 219–22. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69996-2_17.
Der volle Inhalt der QuelleCastro, I. P., M. Dianat und A. Haque. „Shear Layers Bounding Separated Regions“. In Turbulent Shear Flows 6, 299–312. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4_25.
Der volle Inhalt der QuelleLee, C., R. W. Metcalfe und F. Hussain. „Large Scale Structures in Reacting Mixing Layers“. In Turbulent Shear Flows 7, 331–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_24.
Der volle Inhalt der QuelleComte, P., M. Lesieur, H. Laroche und X. Normand. „Numerical Simulations of Turbulent Plane Shear Layers“. In Turbulent Shear Flows 6, 360–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4_29.
Der volle Inhalt der QuelleSpalart, Philippe R., und Anthony Leonard. „Direct Numerical Simulation of Equilibrium Turbulent Boundary Layers“. In Turbulent Shear Flows 5, 234–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-71435-1_20.
Der volle Inhalt der QuelleYu, K., E. Gutmark und K. C. Schadow. „On Coherent Vortex Formation in Axisymmetric Compressible Shear Layers“. In Turbulent Shear Flows 9, 207–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-78823-9_13.
Der volle Inhalt der QuellePlesniak, Michael W., und James P. Johnston. „Reynolds Stress Evolution in Curved Two-Stream Turbulent Mixing Layers“. In Turbulent Shear Flows 7, 239–52. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_18.
Der volle Inhalt der QuelleEgerer, Christian, Stefan Hickel, Steffen Schmidt und Nikolaus A. Adams. „LES of Turbulent Cavitating Shear Layers“. In High Performance Computing in Science and Engineering ‘13, 349–59. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02165-2_24.
Der volle Inhalt der QuelleJohnson, A. E., und P. E. Hancock. „The Effect of Extra Strain Rates of Streamline Curvature and Divergence on Mixing Layers“. In Turbulent Shear Flows 7, 253–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76087-7_19.
Der volle Inhalt der QuelleCoustols, E., C. Tenaud und J. Cousteix. „Manipulation of Turbulent Boundary Layers in Zero-Pressure Gradient Flows: Detailed experiments and Modelling“. In Turbulent Shear Flows 6, 164–78. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73948-4_16.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Turbulent shear layers"
JOHANSEN, J., und C. SMITH. „The effects of cylindrical surface modifications on turbulent boundary layers“. In Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-547.
Der volle Inhalt der QuelleKyrazis, Demos T. „Optical degradation by turbulent free-shear layers“. In SPIE's 1993 International Symposium on Optics, Imaging, and Instrumentation, herausgegeben von Soyoung S. Cha und James D. Trolinger. SPIE, 1993. http://dx.doi.org/10.1117/12.163700.
Der volle Inhalt der QuelleKumar, Vedant, Dipendra Gupta, Gregory P. Bewley und Johan Larsson. „Three-Dimensional Effects in Turbulent Shear Layers“. In AIAA AVIATION FORUM AND ASCEND 2024. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-4372.
Der volle Inhalt der QuelleROOS, F., und J. KEGELMAN. „Control of coherent structures in reattaching laminar and turbulent shear layers“. In Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-554.
Der volle Inhalt der QuelleSchlatter, Phillipp, Ramis Orlu, Qiang Li, Geert Brethouwer, Arne V. Johansson, P. Henrik Alfredsson und Dan S. Henningson. „PROGRESS IN SIMULATIONS OF TURBULENT BOUNDARY LAYERS“. In Seventh International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2011. http://dx.doi.org/10.1615/tsfp7.1790.
Der volle Inhalt der QuelleZheng, Shaokai, und Ellen K. Longmire. „PERTURBING SPANWISE MODES IN TURBULENT BOUNDARY LAYERS“. In Eighth International Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 2013. http://dx.doi.org/10.1615/tsfp8.1340.
Der volle Inhalt der QuelleSMITS, A. „The control of turbulent boundary layers by the application of extrastrain rates“. In Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-538.
Der volle Inhalt der QuelleROSHKO, A., und F. ROBERTS. „Effects of periodic forcing on mixing in turbulent shear layers and wakes“. In Shear Flow Control Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1985. http://dx.doi.org/10.2514/6.1985-570.
Der volle Inhalt der QuelleLAI, H., und M. RAJU. „CFD validation of subsonic turbulent planar shear layers“. In 29th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1993. http://dx.doi.org/10.2514/6.1993-1773.
Der volle Inhalt der QuelleBURR, R., und J. DUTTON. „Numerical modeling of compressible reacting turbulent shear layers“. In 21st Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-1463.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Turbulent shear layers"
Jumper, Eric J. Adaptive Optics for Turbulent Shear Layers. Fort Belvoir, VA: Defense Technical Information Center, Dezember 2006. http://dx.doi.org/10.21236/ada469562.
Der volle Inhalt der QuelleNaguib, Hassan M., Candace E. Wark, Ron J. Adrian, A. M. Naguib und S. Kwan. Investigation of Turbulent Boundary Layers Subjected to Internally or Externally Imposed Time-Dependent Transverse Shear. Fort Belvoir, VA: Defense Technical Information Center, Dezember 1997. http://dx.doi.org/10.21236/ada335110.
Der volle Inhalt der QuelleGlegg, Stewart A. Distorted Turbulent Flow in a Shear Layer. Fort Belvoir, VA: Defense Technical Information Center, März 2014. http://dx.doi.org/10.21236/ada600333.
Der volle Inhalt der QuelleBegeman, Carolyn. Boundary layer turbulence below ice shelves in the shear-dominated regime. Office of Scientific and Technical Information (OSTI), April 2022. http://dx.doi.org/10.2172/1862788.
Der volle Inhalt der QuelleKeith, William L. Spectral Measurements of the Wall Shear Stress and Wall Pressure in a Turbulent Boundary Layer: Theory. Fort Belvoir, VA: Defense Technical Information Center, Juni 1990. http://dx.doi.org/10.21236/ada224070.
Der volle Inhalt der QuelleKamada, R. F. Amending the W* Velocity Scale for Surface Layer, Entrainment Zone, and Baroclinic Shear in Mixed Forced/Free Turbulent Convection. Fort Belvoir, VA: Defense Technical Information Center, März 1992. http://dx.doi.org/10.21236/ada250389.
Der volle Inhalt der QuellePeloquin, Mark S. Direct Measurement of the Mode O Turbulent Boundary Layer Wall Pressure and Wall Shear Stress Spectra Using Air-Backed and Oil-Filled Multichannel Wavenumber Filters. Fort Belvoir, VA: Defense Technical Information Center, Mai 1999. http://dx.doi.org/10.21236/ada371294.
Der volle Inhalt der QuelleMerritt, Elizabeth, Forrest Doss, Eric Loomis, Kirk Flippo und John Kline. Examining the evolution towards turbulence through spatio-temporal analysis of multi-dimensional structures formed by instability growth along a counter propagating shear layer. Office of Scientific and Technical Information (OSTI), Juli 2014. http://dx.doi.org/10.2172/1148305.
Der volle Inhalt der Quelle