Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „TurboID“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "TurboID" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "TurboID"
Cho, Kelvin F., Tess C. Branon, Sanjana Rajeev, Tanya Svinkina, Namrata D. Udeshi, Themis Thoudam, Chulhwan Kwak et al. „Split-TurboID enables contact-dependent proximity labeling in cells“. Proceedings of the National Academy of Sciences 117, Nr. 22 (18.05.2020): 12143–54. http://dx.doi.org/10.1073/pnas.1919528117.
Der volle Inhalt der QuelleCho, Kelvin F., Tess C. Branon, Namrata D. Udeshi, Samuel A. Myers, Steven A. Carr und Alice Y. Ting. „Proximity labeling in mammalian cells with TurboID and split-TurboID“. Nature Protocols 15, Nr. 12 (02.11.2020): 3971–99. http://dx.doi.org/10.1038/s41596-020-0399-0.
Der volle Inhalt der QuelleMay, Danielle G., Kelsey L. Scott, Alexandre R. Campos und Kyle J. Roux. „Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation“. Cells 9, Nr. 5 (25.04.2020): 1070. http://dx.doi.org/10.3390/cells9051070.
Der volle Inhalt der QuelleDoerr, Allison. „Proximity labeling with TurboID“. Nature Methods 15, Nr. 10 (Oktober 2018): 764. http://dx.doi.org/10.1038/s41592-018-0158-0.
Der volle Inhalt der QuelleGarloff, Vera, und Ignacio Rubio. „Schneller, weiter, TurboID – Modulation einer übereifrigen Biotin-Ligase“. BIOspektrum 29, Nr. 3 (Mai 2023): 273–75. http://dx.doi.org/10.1007/s12268-023-1943-6.
Der volle Inhalt der QuelleMakhsatova, S. A., A. B. Kurmanbay, I. A. Akhmetollayev und A. T. Kulyyassov. „ASSEMBLING THE TURBOID-CONTAINING PLASMID CONSTRUCT FOR INVESTIGATING THE IN VIVO PROTEIN-PROTEIN INTERACTIONS“. Eurasian Journal of Applied Biotechnology, Nr. 3S (12.09.2024): 47. http://dx.doi.org/10.11134/btp.3s.2024.35.
Der volle Inhalt der QuelleTakano, Tetsuya. „Comprehensive identification of molecules at synapses and non-synaptic cell-adhesion structure“. Impact 2023, Nr. 3 (21.09.2023): 46–48. http://dx.doi.org/10.21820/23987073.2023.3.46.
Der volle Inhalt der QuelleRabinovich-Ernst, Orna, Clinton Bradfield, SungHwan Yoon, Anthony Armstrong, Samuel Katz, Aleksandra Nita-Lazar und Iain Fraser. „TurboID biotin-tagging mass spectrometry identifies specific caspase-11-associated proteins regulating non-canonical inflammasome activation“. Journal of Immunology 206, Nr. 1_Supplement (01.05.2021): 15.06. http://dx.doi.org/10.4049/jimmunol.206.supp.15.06.
Der volle Inhalt der QuelleKim, Han Byeol, und Kwang-eun Kim. „Precision proteomics with TurboID: mapping the suborganelle landscape“. Korean Journal of Physiology & Pharmacology 28, Nr. 6 (01.11.2024): 495–501. http://dx.doi.org/10.4196/kjpp.2024.28.6.495.
Der volle Inhalt der QuelleGurung, Sadeechya. „Abstract 998: Extracellular proximity labeling (ePL) as a tool to identify protein-protein interactions in the tumor microenvironment“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 998. http://dx.doi.org/10.1158/1538-7445.am2022-998.
Der volle Inhalt der QuelleDissertationen zum Thema "TurboID"
Branon, Tess C. „Directed evolution of TurboID for efficient proximity labeling in living cells and organisms“. Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/120909.
Der volle Inhalt der QuelleCataloged from PDF version of thesis.
Includes bibliographical references.
Protein interaction networks and protein compartmentalization underlie all signaling and regulatory processes in cells. Traditional approaches to proteomics employ mass spectrometry (MS) coupled to biochemical fractionation or affinity purification but require cell lysis prior to analysis which often results in false-negatives from missed interactions or incomplete purification and false-positives from contaminants. Enzyme-catalyzed proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in which a PL enzyme can be genetically targeted to a subcellular region and used to tag surrounding endogenous proteins with a chemical handle that allows their identification by MS. Tagging is carried out in living cells in a distance-dependent manner, allowing data collection from a physiologically relevant environment with preservation of spatial information. Current PL methods are limited by poor catalytic efficiency or toxic substrates that limit their application in vivo. Therefore, we have developed a new proximity labeling method, called TurboID, that uses non-toxic labeling conditions and has high catalytic efficiency that allows its use in a wide variety of biological contexts. Here, we describe our use of yeast display-based directed evolution to engineer two promiscuous mutants of biotin ligase, TurbolD and miniTurbo. We describe our characterization of the evolved PL enzymes in microbes, cultured cells, in vitro, and in vivo in flies and worms, and show that TurbolD and miniTurbo have much greater catalytic efficiency than any other biotin ligase-based PL method currently available. Lastly, we demonstrate that TurbolD and miniTurbo can be used to obtain proteomes with the same size, specificity, and depth-of-coverage as existing biotin-ligase based PL techniques with over 100- fold shorter labeling times. In the Appendix, we discuss two separate projects. In Part I, we describe how fusion of the PL enzyme APEX2 to various mitochondrial proteins could be used to map the proteomes of mitochondrial subdomains and be used to visualize the localization of mitochondrial proteins in mitochondrial subdomains using APEX2 to generate contrast for electron microscopy imaging. In Part II, we discuss the development of two platforms that could be used to temporally control genome editing using light.
by Tess C. Branon.
Ph. D.
Hajj, Sleiman Nawal. „Approche par nanobody pour capturer les interactomes de complexes protéiques dimériques en contexte cellulaire vivant“. Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0041.
Der volle Inhalt der QuelleCell fate and fitness depend on the protein content, and in particular on the interaction networks (also called interactomes) connecting the different proteins. Proteins have the general property to engage in diverse and occasionally overlapping macromolecular assemblies, each serving distinct purposes. Therefore, identifying protein-protein interactions (PPIs) and linking them to complexes is a crucial yet challenging issue in biology. This issue was at the core of my PhD work. The first part of my work was dedicated to the improvement of an existing method for capturing novel PPIs in the context of defined biological functions. This work was established with ERK1, which is a key downstream regulator of several signaling pathways involved in many different cancers. The new tools were tested in the context of two different inhibitory molecules to capture drug-sensitive interactions of ERK1 in human HEK293T cells. One such interaction was confirmed at the functional and molecular levels, by using an original imaging strategy to access the PPI dynamics in live cells. The second part of my PhD work was dedicated to the establishment of a pioneer methodology to capture endogenous PPIs established by a specific dimeric protein complex in human live cells. This methodology couples Bimolecular Fluorescence Complementation (BiFC) and proximity biotin labelling technologies. More specifically, it is based on a GFP-nanobody directed toward the BiFC complex and fused to the TurboID biotin ligase. Tools were established to map TAZ/14-3-3 and TAZ/TEAD complexes interactome, which translate the activity of the Hippo signaling pathway in the cytoplasm and nucleus, respectively. Our approach allowed capturing specific interactomes of the two dimeric protein complexes and identifying a novel key regulator of TAZ/14-3-3 complexes in a cancer cell context. Collectively, my PhD work introduced two complementary methodologies for deciphering PPI networks in the context of specific biological functions or in the context of a specific protein complex in human live cells. These approaches provide a novel dimension for understanding protein functions and the underlying interactomes in normal or pathological cell contexts
Lilliesköld, Anders. „Genomgång av Turbomin 100 : Förstudie och föreslagna förbättringar av undervisningsjetmotor Turbomin 100“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-11195.
Der volle Inhalt der QuellePeiponen, K. E. (Kai-Erik). „Optical spectra analysis of turbid liquids“. Doctoral thesis, University of Oulu, 2009. http://urn.fi/urn:isbn:9789514291685.
Der volle Inhalt der QuelleEsmonde-White, Francis. „Robust spectroscopic quantification in turbid media“. Thesis, McGill University, 2009. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=32512.
Der volle Inhalt der QuelleCette thèse explore quatre méthodes pour l'amélioration de la spectroscopie de réflectance diffuse quantitative dans des milieux qui diffusent la lumière. En introduction, une description des théories de la propagation de la lumière dans des médias qui diffusent celle-ci, des instruments pour mesurer les propriétés de diffusion, des méthodes de traitement des données spectrales, et des bioanalytes avec activité optique est donné. Un nouvel appareil à «temps de vol de photon» est présenté. Cet instrument portatif est utilisé pour mesurer le coefficient de dispersion en tandem avec un spectromètre à diode portable. Les coefficients de diffusion mesurés sont ensuite utilisés pour corriger la dispersion dans les spectres infrarouges co-mesurée, ainsi que l'amélioration de la quantification. Les coefficients de dispersion ont été mesurés avec une variation de 11,6% à 850 nm et 14,1% à 905 nm. En prenant en compte la dispersion, les estimations de la concentration de teinture ont été améliorées de 35%. Un nouvel appareil utilisant les modes d'imagerie annulaire pour mesurer les coefficients de dispersion et d'absorption est présenté. Les coefficients de dispersion ont été mesurés avec un coefficient de variation de 12,6%, et les coefficients d'absorption ont été mesurés avec un coefficient de variation amélioré de 50% par rapport aux méthodes d'imagerie traditionnelle. Une nouvelle méthode pour améliorer l'utilisation des mesures de simplicité dans le développement de méthodes de traitement des données via des algorithmes génétiques est présentée. Les algorithmes génétiques ont été utilisés pour identifier les mét
Doan, Thuy Kim Phuong. „Fonctionnement biogéochimique d'un barrage tropical : application au système turbide de Cointzio (Mexique)“. Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU011/document.
Der volle Inhalt der QuelleLa qualité globale des eaux continentales (lacs et réservoirs) continue à se détériorer dans de nombreuses régions du Mexique. Le réservoir Cointzio, situé dans la partie sud du Plateau Central Mexicain, sur la ceinture “Trans-Mexicain Volcanique Belt » (TMVB), ne fait pas exception. Ce réservoir tropical turbide est un système monomictique chaud (surface = 6 km2, capacité = 66 Mm3, temps de séjour ~ 1 an). Il est stratégique pour l'approvisionnement en eau potable de la ville de Morelia, capitale de l'état du Michoacán, et pour l'irrigation en aval pendant la saison sèche. Le réservoir est menacé par l'accumulation des sédiments et des nutriments provenant d'eaux non traitées dans le bassin versant amont. La haute teneur en particules d'argile très fines et le manque d'installations de traitement de l'eau conduisent à de graves épisodes d'eutrophisation (jusqu'à 70 µg chl. a L-1) ainsi qu'à des périodes saisonnières de forte turbidité (profondeur de Secchi < 30 cm) et d'anoxie (de Mai à Octobre). Sur la base de mesures intensives de terrain réalisées en 2009 (échantillonnage dans le bassin versant, sédiments déposés, profils verticaux de l'eau, bilan entrées et sorties) nous avons présenté une étude intégrée du fonctionnement hydrodynamique et biogéochimique du réservoir Cointzio. Les profils verticaux de température (T), de concentration en sédiment en suspension (TSS), d'oxygène dissous (DO), de chlorophylle a, de carbone et de nutriments ont été utilisés pour évaluer les cycles internes au réservoir. Pour compléter l'analyse des données de terrain, nous avons examiné la capacité de différents modèles numériques 1DV (Aquasim modèle biogéochimique couplé avec le modèle de mélange k-ε) à (i) reproduire les principaux cycles biogéochimiques dans le réservoir Cointzio et (ii) préciser les scénarios de réduction des éléments nutritifs (P and N) pour limiter l'eutrophisation dans les prochaines décennies. Le modèle k-ε s'est avéré le plus robuste pour reproduire les conditions hydrodynamiques, en particulier la stratification modérée liée à la très grande turbidité et au régime soutenu de vent thermique. Le modèle Aquasim s'est avéré pertinent pour reproduire les principaux cycles de l'oxygène dissous DO, des nutriments et de la chlorophylle a au cours de l'année 2009. Les différentes simulations ont souligné l'impact négatif à long terme du réchauffement climatique. A la fin du siècle (2090), une augmentation de la température de l'air atteignant 4.4° C a été prédite à partir de modèles de circulation mondiale. Couplé avec une année hydrologique sèche, une telle situation pourrait conduire à des conditions anoxiques sévères et à des blooms importants de chlorophylle a (jusqu'à de 94 µg L-1). Diverses simulations ont montré que la réduction drastique de l'apport de nutriments (à 90%) serait nécessaire pour réduire de façon significative les teneurs en chlorophylle a. Si de telles mesures d'atténuation sont adoptées, le pic maximal de chlorophylle a se stabiliserait à 40 µg L-1, au lieu de 94 mg L-1, après une période de cinq ans d'efforts. À notre connaissance, cette étude fournit la première application numérique de modèles k-ε et AQUASIM pour simuler les niveaux d'eutrophisation élevés dans un réservoir tropical très turbide
Pour, Moghadam Parsa, und Kiarash Khaksa. „Underhåll av Turbomin 100“. Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-21643.
Der volle Inhalt der QuelleDucay, Rey Nann Mark Abaque. „Direct Detection of Aggregates in Turbid Colloidal Suspensions“. Miami University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=miami1439434385.
Der volle Inhalt der QuelleŠedý, Jakub. „Turbo konvoluční a turbo blokové kódy“. Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219287.
Der volle Inhalt der QuelleGareau, Daniel S. „In vivo confocal microsopy in turbid media : a thesis /“. Restricted access until December 2007 at:, 2006. http://content.ohsu.edu/u?/etd,161.
Der volle Inhalt der QuelleBücher zum Thema "TurboID"
Turbide, Rachel. Répertoire des familles Turbide et Turbis: Descendantes de Dominique Dithurbide et Marie-Anne Boudrot. Baie-Comeau: Editions R. Turbide, 1996.
Den vollen Inhalt der Quelle findenBermúdez, Iván Cerdán. Turbio. Madrid, España: Huerga & Fierro Editores, 2014.
Den vollen Inhalt der Quelle findenPlomer, William. Turbott Wolfe. New York: Modern Library, 2003.
Den vollen Inhalt der Quelle findenPlomer, William. Turbott Wolfe. Oxford [Oxfordshire]: Oxford University Press, 1985.
Den vollen Inhalt der Quelle findenPlomer, William. Turbott Wolfe. San Diego: Harcourt Brace Jovanovich, 1987.
Den vollen Inhalt der Quelle findenKotli͡ar, M. M. Turboty ahronoma. Simferopolʹ: "Tavrii͡a", 1986.
Den vollen Inhalt der Quelle findenLivmar, Pabsi. Teoremas turbios. San Juan, P.R: EDP University of Puerto Rico, Inc., 2018.
Den vollen Inhalt der Quelle findenGu, Min, Xiaosong Gan und Xiaoyuan Deng. Microscopic Imaging Through Turbid Media. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-46397-0.
Der volle Inhalt der QuelleRojas, Gonzalo. Río turbio. Madrid: Hiperión, 1996.
Den vollen Inhalt der Quelle findenRojas, Gonzalo. Río turbio. Valdivia [Chile]: El Kultrún/Barba de Palo, 1996.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "TurboID"
Gryffroy, Lore, Joren De Ryck, Veronique Jonckheere, Sofie Goormachtig, Alain Goossens und Petra Van Damme. „Cataloguing Protein Complexes In Planta Using TurboID-Catalyzed Proximity Labeling“. In Methods in Molecular Biology, 311–34. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3327-4_26.
Der volle Inhalt der QuelleArtan, Murat, und Mario de Bono. „Proteomic Analysis of C. Elegans Neurons Using TurboID-Based Proximity Labeling“. In Neuromethods, 277–94. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2321-3_15.
Der volle Inhalt der QuelleLi, Yuanyuan, Yongliang Zhang und Savithramma P. Dinesh-Kumar. „TurboID-Based Proximity Labeling: A Method to Decipher Protein–Protein Interactions in Plants“. In Methods in Molecular Biology, 257–72. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3485-1_19.
Der volle Inhalt der QuelleLin, Danni, Jiayi Kuang und Caiji Gao. „Identification of Neighboring Proteins of Endosomal Regulators by Using TurboID-Based Proximity Labeling“. In Methods in Molecular Biology, 121–30. New York, NY: Springer US, 2024. http://dx.doi.org/10.1007/978-1-0716-4059-3_11.
Der volle Inhalt der QuelleGooch, Jan W. „Turbid“. In Encyclopedic Dictionary of Polymers, 774. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_12215.
Der volle Inhalt der QuellePerson-Le Ruyet, Jeannine. „Turbot Culture“. In Practical Flatfish Culture and Stock Enhancement, 123–39. Oxford, UK: Wiley-Blackwell, 2010. http://dx.doi.org/10.1002/9780813810997.ch7.
Der volle Inhalt der QuelleRichards-Kortum, Rebecca. „Fluorescence Spectroscopy of Turbid Media“. In Optical-Thermal Response of Laser-Irradiated Tissue, 667–707. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-6092-7_20.
Der volle Inhalt der QuelleWu, Zining. „Turbo Codes and Turbo Equalization“. In Coding and Iterative Detection for Magnetic Recording Channels, 21–46. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4565-1_2.
Der volle Inhalt der QuelleKing, B., und E. Wolanski. „Bottom friction reduction in turbid estuaries“. In Mixing in Estuaries and Coastal Seas, 325–37. Washington, D. C.: American Geophysical Union, 1996. http://dx.doi.org/10.1029/ce050p0325.
Der volle Inhalt der QuelleMatousek, Pavel. „Subsurface Raman Spectroscopy in Turbid Media“. In Infrared and Raman Spectroscopic Imaging, 541–60. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014. http://dx.doi.org/10.1002/9783527678136.ch13.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "TurboID"
Zubiaga Elordieta, Ana Mari, Jone Mitxelena Sánchez, James D. Sutherland und Ekaitz Madariaga Carrero. „Gertuko biotinilazioa E2F7 transkripzio faktorearen interaktoma deskribatzeko estrategia gisa: TurboID sistemaren garapena“. In V. Ikergazte. Nazioarteko ikerketa euskaraz. Bilbao: UEU arg, 2023. http://dx.doi.org/10.26876/ikergazte.v.04.15.
Der volle Inhalt der QuelleMair, Andrea. „Bringing the ‘PL’ to Plants - Proximity labeling with TurboID as a new tool to study protein complexes and cellular proteomes in plants“. In ASPB PLANT BIOLOGY 2020. USA: ASPB, 2020. http://dx.doi.org/10.46678/pb.20.989688.
Der volle Inhalt der QuelleTaylor, Alexander H., Pavan Naik, Simon Nibler und Nisar Al-Hasan. „Optimization of Variable Geometry Turbine Electric Turbocharger for a Heavy-Duty, On-Highway Fuel Cell“. In ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/gt2023-101224.
Der volle Inhalt der QuelleJezequel, M. „Turbo4: a high bit-rate chip for turbo code encoding and decoding“. In IEE Colloquium. Turbo Codes in Digital Broadcasting - Could it Double Capacity? IEE, 1999. http://dx.doi.org/10.1049/ic:19990784.
Der volle Inhalt der QuelleHan, Wook-Shin, Jinsoo Lee und Jeong-Hoon Lee. „Turboiso“. In the 2013 international conference. New York, New York, USA: ACM Press, 2013. http://dx.doi.org/10.1145/2463676.2465300.
Der volle Inhalt der QuelleCizmar, Tomas. „Imaging through Turbid Media“. In Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cosi.2014.cw1c.2.
Der volle Inhalt der QuelleWood, Michael F. G., Nirmalya Ghosh, Marika A. Wallenburg, Eduardo H. Moriyama, Shu-Hong Li, Richard D. Weisel, Brian C. Wilson, Ren-Ke Li und I. Alex Vitkin. „Turbid polarimetry for tissue characterization“. In European Conference on Biomedical Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/ecbo.2009.7371_06.
Der volle Inhalt der QuelleWood, Michael F. G., Nirmalya Ghosh, Marika A. Wallenburg, Eduardo H. Moriyama, Shu-Hong Li, Richard D. Weisel, Brian C. Wilson, Ren-Ke Li und I. Alex Vitkin. „Turbid polarimetry for tissue characterization“. In European Conferences on Biomedical Optics, herausgegeben von Christian D. Depeursinge und I. Alex Vitkin. SPIE, 2009. http://dx.doi.org/10.1117/12.831744.
Der volle Inhalt der QuelleWang, Lihong V., und Qimin Shen. „Sonoluminescence tomography of turbid media“. In BiOS '99 International Biomedical Optics Symposium, herausgegeben von Britton Chance, Robert R. Alfano und Bruce J. Tromberg. SPIE, 1999. http://dx.doi.org/10.1117/12.356828.
Der volle Inhalt der QuelleDayton, A. L., und S. A. Prahl. „Turbid-polyurethane phantom for microscopy“. In Biomedical Optics (BiOS) 2008, herausgegeben von Robert J. Nordstrom. SPIE, 2008. http://dx.doi.org/10.1117/12.764010.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "TurboID"
Jonkman, B. J., und M. L. ,. Jr Buhl. TurbSim User's Guide. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/891594.
Der volle Inhalt der QuelleJonkman, B. J., und M. L. ,. Jr Buhl. TurbSim User's Guide. Office of Scientific and Technical Information (OSTI), September 2005. http://dx.doi.org/10.2172/15020326.
Der volle Inhalt der QuelleFarr, Norman, Emmanuel Boss, Paul S. Hill, Brent Law, Timothy G. Milligan, John J. Trowbridge und Chris R. Sherwood. Optical Data Transmission in a Turbid Environment. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada557234.
Der volle Inhalt der QuelleMilligan, Timothy G. Evolution of Particle Size in Turbid Discharge Plumes. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada613280.
Der volle Inhalt der QuelleHill, Paul S., und Timothy G. Milligan. Evolution of Particle Size in Turbid Discharge Plumes. Fort Belvoir, VA: Defense Technical Information Center, September 1998. http://dx.doi.org/10.21236/ada537161.
Der volle Inhalt der QuelleHill, Paul S., und Timothy G. Milligan. Evolution of Particle Size in Turbid Discharge Plumes. Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada629421.
Der volle Inhalt der QuelleHill, Paul S. Evolution of particle size in turbid discharge plumes. Fort Belvoir, VA: Defense Technical Information Center, September 1999. http://dx.doi.org/10.21236/ada630881.
Der volle Inhalt der QuelleJonkman, B. J. Turbsim User's Guide: Version 1.50. Office of Scientific and Technical Information (OSTI), September 2009. http://dx.doi.org/10.2172/965520.
Der volle Inhalt der QuellePhillips, Lee, und David Fyfe. TURBID: A Routine for Generating Random Turbulent Inflow Data. Fort Belvoir, VA: Defense Technical Information Center, November 2011. http://dx.doi.org/10.21236/ada552556.
Der volle Inhalt der QuelleCarder, Kendall L., und David K. Costello. Optical Variability and Bottom Classification in Turbid Waters: Phase II. Fort Belvoir, VA: Defense Technical Information Center, August 2002. http://dx.doi.org/10.21236/ada628344.
Der volle Inhalt der Quelle