Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Tungsten“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Tungsten" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Tungsten"
Kwon, Hanjung, und Jung-Min Shin. „Sintering Behavior and Hardness of Tungsten Prepared by Hard Metal Sludge Recycling Process without Ammonium Paratungstate“. Korean Journal of Metals and Materials 60, Nr. 1 (05.01.2022): 53–61. http://dx.doi.org/10.3365/kjmm.2022.60.1.53.
Der volle Inhalt der QuellePee, J. H., G. H. Kim, H. Y. Lee und Y. J. Kim. „Extraction Factor Of Tungsten Sources From Tungsten Scraps By Zinc Decomposition Process“. Archives of Metallurgy and Materials 60, Nr. 2 (01.06.2015): 1311–14. http://dx.doi.org/10.1515/amm-2015-0120.
Der volle Inhalt der QuelleFu, Xiao Ming, Chen Chen Xie und Liang Yi Zhou. „Submicron Tungsten Powder Prepared through the Circulatory Oxidization-Reduction Method“. Advanced Materials Research 228-229 (April 2011): 283–87. http://dx.doi.org/10.4028/www.scientific.net/amr.228-229.283.
Der volle Inhalt der QuelleNagy, Áron Kázmér, Judit Pfeifer, István Endre Lukács, Attila Lajos Tóth und Csaba Balázsi. „Electrospinning – A Candidate for Fabrication of Semiconducting Tungsten Oxide Nanofibers“. Materials Science Forum 659 (September 2010): 215–19. http://dx.doi.org/10.4028/www.scientific.net/msf.659.215.
Der volle Inhalt der QuelleNielsen, K. H., K. Wondraczek, U. S. Schubert und L. Wondraczek. „Large-area wet-chemical deposition of nanoporous tungstic silica coatings“. Journal of Materials Chemistry C 3, Nr. 38 (2015): 10031–39. http://dx.doi.org/10.1039/c5tc02045j.
Der volle Inhalt der QuelleLabbe, Ph. „Tungsten Oxides, Tungsten Bronzes and Tungsten Bronze-Type Structures“. Key Engineering Materials 68 (Januar 1992): 293–0. http://dx.doi.org/10.4028/www.scientific.net/kem.68.293.
Der volle Inhalt der QuelleKumar, A., und N. C. Aery. „Effect of tungsten on growth, biochemical constituents, molybdenum and tungsten contents in wheat“. Plant, Soil and Environment 57, No. 11 (08.11.2011): 519–25. http://dx.doi.org/10.17221/345/2011-pse.
Der volle Inhalt der QuellePee, J. H., G. H. Kim, H. Y. Lee und Y. J. Kim. „Extraction Factor Of Pure Ammonium Paratungstate From Tungsten Scraps“. Archives of Metallurgy and Materials 60, Nr. 2 (01.06.2015): 1403–5. http://dx.doi.org/10.1515/amm-2015-0141.
Der volle Inhalt der QuelleTran-Nguyen, D. H., D. Jewell und D. J. Fray. „Electrochemical preparation of tungsten, tungsten carbide and cemented tungsten carbide“. Mineral Processing and Extractive Metallurgy 123, Nr. 1 (19.12.2013): 53–60. http://dx.doi.org/10.1179/1743285513y.0000000049.
Der volle Inhalt der QuelleKumari, J., und P. Mangala. „Enhanced Anticarcinogenic and Antimicrobial Response of Synthesized Tungsten Oxide Nanoparticles“. Journal of Scientific Research 15, Nr. 1 (01.01.2023): 141–57. http://dx.doi.org/10.3329/jsr.v15i1.58211.
Der volle Inhalt der QuelleDissertationen zum Thema "Tungsten"
Erdogan, Metehan. „Recovery Of Tungsten From Tungsten Bearing Compounds“. Phd thesis, METU, 2013. http://etd.lib.metu.edu.tr/upload/12615540/index.pdf.
Der volle Inhalt der Quelletemperature, acid concentration and exposure time. Main effect and interaction graphs for calcium percent as a function of process parameters were plotted. Calcium contents of the samples were determined by XRF measurements. A 300 g/day capacity tungsten production line was manufactured to take the process one step closer to industrialization. Problems at larger scale were addressed as incomplete reduction, oxidation of graphite and corrosion of cathode materials. After careful research, AISI 316 Ti steel was found to impart sufficient resistance to highly corrosive environment. Oxidation of graphite anode inside the cell was lowered to acceptable levels by continuous nitrogen flow. Metallic tungsten powder was obtained from rich and flotation concentrates of Uludag Etibank Volfram Plant (closed in 1989) together with mainly iron. It was seen that tungsten and iron do not make compounds at the temperatures used for reduction (600-750oC). A basic diffusion model in the electrolyte was developed to better understand the decrease in current values and incomplete reduction encountered during large scale production. The model was used to simulate the recorded current vs. time graphs of selected experiments.
Zacharias, Marisa Aparecida [UNESP]. „Síntese, caracterização e estudos de precursores e de óxidos de molibdênio e de tungstênio“. Universidade Estadual Paulista (UNESP), 2000. http://hdl.handle.net/11449/105673.
Der volle Inhalt der QuelleO presente trabalho tem como objetivo a obtenção de óxidos de molibdênio e de tungstênio com propriedades texturais controladas, particularmente com elevadas áreas específicas. Tais óxidos serão posteriormente empregados como precursores nas sínteses de nitretos e carbetos de molibdênio e de tungstênio, materiais potencialmente promissores na decomposição catalítica da hidrazina em sistemas micropopulsivos de satélites. Sabe-se da literatura que uma rede inorgânica de óxidos pode ser proveniente de vários precursores. Visando alcançar o objetivo do trabalho proposto, procurou-se primeiramente obter os óxidos, via processo sol-gel, a partir da decomposição térmica dos alcóxidos de molibdênio e de tungstênio. No decorrer do desenvolvimento do projeto de pesquisa achou-se também conveniente testar a decomposição térmica de outros precursores. Estas novas rotas exigem as sínteses de complexos de molibdênio (VI) e de tungstênio (VI) com ácidos a-hidroxicarboxílicos, de ácidos molíbdico e túngstico e dos saia de amônio dos referidos metais. Os materiais sintetizados foram, sempre que possível, analisados por espectroscopia na região infravermelho, difração de raios X e medidas de adsorção de nitrogênio na sua temperatura de condensação. Algumas amostras foram submetidas à análise elementar para a determinação dos teores de C, N e H. Efetuou-se a decomposição térmica de todos os precursores, sendo os óxidos obtidos analisados pelas mesmas técnicas utilizadas anteriormente. Os óxidos de molibdênio apresentaram uma fase cristalina ortorrômbica, exceto em algumas amostras onde se observou além desta fase, a presença de uma pequena quantidade de material amorfo.Com relação ao óxido de molibdênio, o maior valor de área específica de um foi de 8m2/g para uma amostra proveniente da hidrólise controlada de um alcóxido metálico...
The present work hás a objective the obtaining of molibdenum and tungsten oxides with texturais controlled properties, particularly with high specific areas. Such oxides will be used later on as precursors in the nitrides and carbides synthesis of molibdenium and tungsten, materials potentially promissing in the catalytic decomposition of the hydrazine in micropopulsives system of satellites. It's known about the literature that an inorganic net of oxide can come from several precursors. Seeking to reach the objective of the proposed work, it was firstly tried to obtain the oxides through sol-gel process, starting from the thermal decomposition of the molybdenum and tungsten alcoxides. In elapsing of the development in the research project it was also convenient to test the thermal decomposition of others precursors. These new routes demand the syntheses of molibdenium(VI) and tungsten(VI) complexes with the a-hidroxycarboxylic acids, of molybdic and tungstic acids and of the ammonium salts of the referred metals.The synthesized materials were, whenever possible, analysed by spectroscopy in the infrared region, of X-rays diffraction and measures of adsorption of nitrogen in its condensation temperature. Some samples were submitted the elementary analysis for the determination of texts of C, N and H. The thermal decomposition of all precursors was made, being the obtained oxides analysed same techniques previously used. The molibdenium oxides presented crystalline orthorhombic phase, except in some samples where it was observed besides this phase, the presence of a small amount of amorphous material. With relationship to molibdenium oxide, the largest value of specific area went of 8m2/g to a coming sample of the controlled hydrolysis of a metallic alcoxide. It was also obtained of area around 8m2/g for the ocide, coming from a of molybdic acid sample... (Complete abstract, click electronic address below)
Gianni, Lorenzo. „Electrodialytic recovery of tungsten and cobalt from tungsten carbide scrap“. Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Den vollen Inhalt der Quelle findenOgundipe, Adebayo. „Environmental release of tungsten and other elements from tungsten heavy alloys addressing the environmental viability of tungsten heavy alloys“. Saarbrücken VDM Verlag Dr. Müller, 2006. http://d-nb.info/989277992/04.
Der volle Inhalt der QuellePimenta, Juliana de Oliveira [UNESP]. „Influência do tratamento térmico assistido por pressão nas propriedades óptica e elétrica do trióxido de tungstênio“. Universidade Estadual Paulista (UNESP), 2015. http://hdl.handle.net/11449/138511.
Der volle Inhalt der QuelleThe aim of this work is to study the influence of a pressure-assisted heat treatment on the electrical and optical properties of nanoparticulate tungsten trioxide (WO3) obtained by microwave assisted hydrothermal method. The behavior of WO3 as gas sensor and its pholominescence emission were used to evaluate the electrical and optical properties, respectively. Samples were heat-treated under an air pressure of 2 MPa at 180ºC for 32 h. The oxides obtained were previously characterized by X-ray diffraction (XRD), nitrogen adsorption volumetric (BET), X-ray Photoelectron Spectroscopy (XPS), and field emission scanning electron microscopy (FEG-SEM) and micro Raman Spectroscopy. Using combined techniques, the structure, morphology, size and chemical composition of the synthetized materials were characterized in details. A comparison between samples that underwent the pressure-assisted heat treatment and samples that underwent a conventional heat treatment was established. The originality of the work is to understand how the pressure-assisted heat treatment chames the tungsten trioxide behavior without the addition of dopants. The photoluminescence emission intensity increased after the pressure treatment, and the maximum emission changed from 460 nm (blue) to 549 nm (green). The spectrum exhibited a red shift at higher wavelengths. This displacement and change in intensity can be correlated to a decrease in oxygen vacancies after the pressure-assisted heat treatment. In addition, the electrical properties were investigated as a n-type gas sensor for NO2 and H2 that are reducing and oxidizing gases, respectively. Samples became more resistive to electric current impeding the investigation of the sensing properties of the oxide under study.
Pimenta, Juliana de Oliveira. „Influência do tratamento térmico assistido por pressão nas propriedades óptica e elétrica do trióxido de tungstênio /“. Araraquara, 2015. http://hdl.handle.net/11449/138511.
Der volle Inhalt der QuelleCo-orientador: Sergio Mazurek Tebcherani
Banca: Evaldo Toniolo Kubaski
Banca: Máximo Siu Li
Banca: Sônia Maria Zanetti
Banca: Anderson André Felix
Resumo:Este trabalho é referente ao estudo investigativo da influência de um tratamento térmico assistido por pressão nas respostas de propriedade elétrica, como sensor de gás e propriedade ótica de fotoluminescência de nanopartículas de trióxido de tungstênio (WO3), obtidas por processo hidrotermal assistido com micro-ondas adaptado. As condições de tratamento foram de 180 ºC sob pressão de 2 MPa durante 32 horas. Os óxidos obtidos foram previamente caracterizados por difração de raios X (DRX), volumetria de adsorção de nitrogênio (BET), espectroscopia de fotoelétrons excitados por raios X (XPS), microscopia eletrônica de varredura por emissão de campo (FEG-SEM) e espectroscopia micro Raman. Pelas técnicas combinadas foi possível caracterizar detalhadamente os materiais sintetizados, como sua estrutura, forma, tamanho e composição química. Foi possível comparar a respostas do material quando o óxido é submetido ao tratamento térmico assistido por pressão com o óxido obtido somente com tratamento térmico convencional. A originalidade do trabalho está em compreender como o tratamento térmico assistido por pressão está alterando as respostas do trióxido de tungstênio, sem a necessidade da adição de dopantes. Quando analisado a propriedade ótica após esse tratamento com pressão, o trióxido de tungstênio apresentou um aumento na intensidade de emissão, passando da emissão de maior contribuição em 460 nm (azul) para a emissão em 549 nm (verde). O espectro ainda apresenta um deslocamento para o vermelho, em comprimentos de onda maiores. Este deslocamento e mudança na intensidade podem estar correlacionados a diminuição de vacâncias de oxigênio após o tratamento térmico assistido por pressão. Também foram estudadas as propriedades elétricas como sensor de gás do tipo-n para gases redutores e oxidantes (H2 e NO2, respectivamente). As amostras tratadas...
Abstract: The aim of this work is to study the influence of a pressure-assisted heat treatment on the electrical and optical properties of nanoparticulate tungsten trioxide (WO3) obtained by microwave assisted hydrothermal method. The behavior of WO3 as gas sensor and its pholominescence emission were used to evaluate the electrical and optical properties, respectively. Samples were heat-treated under an air pressure of 2 MPa at 180ºC for 32 h. The oxides obtained were previously characterized by X-ray diffraction (XRD), nitrogen adsorption volumetric (BET), X-ray Photoelectron Spectroscopy (XPS), and field emission scanning electron microscopy (FEG-SEM) and micro Raman Spectroscopy. Using combined techniques, the structure, morphology, size and chemical composition of the synthetized materials were characterized in details. A comparison between samples that underwent the pressure-assisted heat treatment and samples that underwent a conventional heat treatment was established. The originality of the work is to understand how the pressure-assisted heat treatment chames the tungsten trioxide behavior without the addition of dopants. The photoluminescence emission intensity increased after the pressure treatment, and the maximum emission changed from 460 nm (blue) to 549 nm (green). The spectrum exhibited a red shift at higher wavelengths. This displacement and change in intensity can be correlated to a decrease in oxygen vacancies after the pressure-assisted heat treatment. In addition, the electrical properties were investigated as a n-type gas sensor for NO2 and H2 that are reducing and oxidizing gases, respectively. Samples became more resistive to electric current impeding the investigation of the sensing properties of the oxide under study.
Doutor
Zacharias, Marisa Aparecida. „Síntese, caracterização e estudos de precursores e de óxidos de molibdênio e de tungstênio /“. Araraquara : [s.n.], 2000. http://hdl.handle.net/11449/105673.
Der volle Inhalt der QuelleAbstract: The present work hás a objective the obtaining of molibdenum and tungsten oxides with texturais controlled properties, particularly with high specific areas. Such oxides will be used later on as precursors in the nitrides and carbides synthesis of molibdenium and tungsten, materials potentially promissing in the catalytic decomposition of the hydrazine in micropopulsives system of satellites. It's known about the literature that an inorganic net of oxide can come from several precursors. Seeking to reach the objective of the proposed work, it was firstly tried to obtain the oxides through sol-gel process, starting from the thermal decomposition of the molybdenum and tungsten alcoxides. In elapsing of the development in the research project it was also convenient to test the thermal decomposition of others precursors. These new routes demand the syntheses of molibdenium(VI) and tungsten(VI) complexes with the a-hidroxycarboxylic acids, of molybdic and tungstic acids and of the ammonium salts of the referred metals.The synthesized materials were, whenever possible, analysed by spectroscopy in the infrared region, of X-rays diffraction and measures of adsorption of nitrogen in its condensation temperature. Some samples were submitted the elementary analysis for the determination of texts of C, N and H. The thermal decomposition of all precursors was made, being the obtained oxides analysed same techniques previously used. The molibdenium oxides presented crystalline orthorhombic phase, except in some samples where it was observed besides this phase, the presence of a small amount of amorphous material. With relationship to molibdenium oxide, the largest value of specific area went of 8m2/g to a coming sample of the controlled hydrolysis of a metallic alcoxide. It was also obtained of area around 8m2/g for the ocide, coming from a of molybdic acid sample... (Complete abstract, click electronic address below)
Orientador: Antonio Carlos Massabni
Coorientador: Sandra Helena Pulcinelli
Banca: Elizabeth Berwerth Stucchi
Banca: Carlos de Oliveira Paiva Santos
Banca: José Augusto Jorge Rodrigues
Banca: Ariovaldo de Oliveira Florentino
Doutor
Björklund, Kajsa. „Microfabrication of Tungsten, Molybdenum and Tungsten Carbide Rods by Laser-Assisted CVD“. Doctoral thesis, Uppsala University, Department of Materials Chemistry, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-1593.
Der volle Inhalt der QuelleThin films of refractory metals and carbides have been studied extensively over many years because of their wide range of application. The two major techniques used are Chemical Vapour Deposition (CVD) and Physical Vapour Deposition (PVD). These can result in the deposition of two-dimensional blanket or patterned thin films. Laser-assisted Chemical Vapour Deposition (LCVD) can provide a maskless alternative for localised deposition in two and three dimensions. This thesis describes LCVD of micrometer-sized tungsten, molybdenum and tungsten carbide rods. The kinetics, phase composition and microstructure have been studied as a function of in situ measured laser induced deposition temperature.
Tungsten and molybdenum rods were deposited by hydrogen reduction of their corresponding hexafluorides, WF6 and MoF6, respectively. Single crystal and polycrystalline tungsten rods were obtained, depending on the H2/WF6 molar ratio and deposition temperature. The molybdenum rods were either single crystals or dendritic in form depending on experimental conditions. The field emission characteristics of the tungsten single crystals were investigated. The results showed LCVD to be a potential fabrication technique for field emitting cathodes.
Nanocrystalline tungsten carbide rods were deposited from WF6, C2H4 and H2. TEM analysis showed that the carbide rods exhibited a layered structure in terms of phase composition and grain size as a result of the temperature gradient induced by the laser beam. With decreasing WF6/C2H4 molar ratio, the carbon content in the rods increased and the phase composition changed from W/W2C to WC/WC1-x and finally to WC1-x/C.
Björklund, Kajsa. „Microfabrication of tungsten, molybdenum and tungsten carbide rods by laser-assisted CVD /“. Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5197-7/.
Der volle Inhalt der QuelleWilliams, Paul Andrew. „The synthesis of novel tungsten precursors for the CVD of tungsten oxide“. Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.323568.
Der volle Inhalt der QuelleBücher zum Thema "Tungsten"
Lassner, Erik, und Wolf-Dieter Schubert. Tungsten. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9.
Der volle Inhalt der QuelleSmith, Gerald R. Tungsten. Washington, D.C: U.S. Department of the Interior, Bureau of Mines, 1991.
Den vollen Inhalt der Quelle findenUnited States. Agency for Toxic Substances and Disease Registry. Division of Toxicology. Tungsten. Atlanta, GA: Dept. of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Division of Toxicology, 2005.
Den vollen Inhalt der Quelle findenInternational Conference on Tungsten and Tungsten Alloys (1st 1992 Arlington, Va.). Tungsten & tungsten alloys, 1992: Proceedings of the First International Conference on Tungsten and Tungsten Alloys. Princeton, N.J: The Federation, 1993.
Den vollen Inhalt der Quelle findenCzack, Gerhard, Gerhard Kirschstein, Wolfgang Kurtz und Frank Stein. W Tungsten. Herausgegeben von Wolfgang Huisl, Wolfgang Kurtz und Frank Stein. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-10154-4.
Der volle Inhalt der QuelleJehn, Hermann, Schwäbisch Gmünd, Gudrun Bär, Erich Best und Ernst Koch. W Tungsten. Herausgegeben von Jörn von Jouanne, Elisabeth Koch und Ernst Koch. Berlin, Heidelberg: Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-662-08684-1.
Der volle Inhalt der QuelleBest, Erich, Peter Kuhn, Wolfgang Kurtz und Hildegard List. W Tungsten. Herausgegeben von Hartmut Bergmann, Dieter Gras, Ingeborg Hinz, Ernst Koch, Wolfgang Kurtz und Ursula Vetter. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-662-08687-2.
Der volle Inhalt der QuelleKurtz, Wolfgang, und Hans Vanecek. W Tungsten. Herausgegeben von Ernst Koch und Wolfgang Kurtz. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-662-08690-2.
Der volle Inhalt der QuelleKurlov, Alexey S., und Aleksandr I. Gusev. Tungsten Carbides. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00524-9.
Der volle Inhalt der QuelleVallejo, César. Tungsten: A novel. Syracuse, N.Y: Syracuse University Press, 1988.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Tungsten"
Lassner, Erik, und Wolf-Dieter Schubert. „The Element Tungsten“. In Tungsten, 1–59. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_1.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Tungsten in Catalysis“. In Tungsten, 365–75. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_10.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Tungsten Scrap Recycling“. In Tungsten, 377–85. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_11.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Ecology“. In Tungsten, 387–94. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_12.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Economy“. In Tungsten, 395–407. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_13.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Tungsten and Living Organisms“. In Tungsten, 409–16. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_14.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Tungsten History“. In Tungsten, 61–84. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_2.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Important Aspects of Tungsten Chemistry“. In Tungsten, 85–132. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_3.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Tungsten Compounds and Their Application“. In Tungsten, 133–77. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_4.
Der volle Inhalt der QuelleLassner, Erik, und Wolf-Dieter Schubert. „Industrial Production“. In Tungsten, 179–253. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-4907-9_5.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Tungsten"
Kobayashi, Nobuyoshi, Masayuki Suzuki und Masayoshi Saitou. „Tungsten Plug Technology: Substituting Tungsten for Silicon Using Tungsten Hexaflouride“. In 1988 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 1988. http://dx.doi.org/10.7567/ssdm.1988.a-5-3.
Der volle Inhalt der QuelleCreighton, J. R. „Non-selective tungsten chemical-vapor deposition using Tungsten hexacarbonyl“. In AIP Conference Proceedings Vol. 167. AIP, 1988. http://dx.doi.org/10.1063/1.37175.
Der volle Inhalt der QuelleMATĚJÍČEK, Jiří, Jakub KLEČKA, Jan CIZEK, Jakub VEVERKA, Monika VILÉMOVÁ, Tomáš CHRÁSKA und Vishnu GANESH. „Tungsten-steel and tungsten-chromium composites prepared by RF plasma spraying“. In METAL 2020. TANGER Ltd., 2020. http://dx.doi.org/10.37904/metal.2020.3548.
Der volle Inhalt der QuelleMittelstadt, Chad R. „Silver Tungsten vs Silver Tungsten Carbide Contact Performance in Environmental Testing“. In 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm 2012). IEEE, 2012. http://dx.doi.org/10.1109/holm.2012.6336600.
Der volle Inhalt der QuelleAvotina, Liga, Lada Bumbure, Annija Elizabete Goldmane, Edgars Vanags, Marina Romanova, Hermanis Sorokins, Aleksandrs Zaslavskis, Gunta Kizane und Yuri Dekhtyar. „Thermal behaviour of magnetron sputtered tungsten and tungsten-boride thin films“. In 2022 International Conference on Applied Electronics (AE). IEEE, 2022. http://dx.doi.org/10.1109/ae54730.2022.9920033.
Der volle Inhalt der QuelleRana, Ahsan Sarwar, Taimoor Naeem, Muhammad Zubair und Muhammad Qasim Mehmood. „Tungsten based optical absorber“. In 2020 17th International Bhurban Conference on Applied Sciences and Technology (IBCAST). IEEE, 2020. http://dx.doi.org/10.1109/ibcast47879.2020.9044598.
Der volle Inhalt der QuelleRana, Ahsan Sarwar, Muhammad Qasim Mehmood, Heongyeong Jeong, Inki Kim und Junsuk Rho. „Ultra-Broadband Tungsten Absorber“. In 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama). IEEE, 2018. http://dx.doi.org/10.23919/piers.2018.8597930.
Der volle Inhalt der QuelleYe, Yu, Zi Jing Wong, Xiufang Lu, Hanyu Zhu, Yuan Wang, Xianhui Chen und Xiang Zhang. „Monolayer Tungsten Disulfide Laser“. In CLEO: Science and Innovations. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.sm2f.7.
Der volle Inhalt der QuelleHirata, G. A., O. Contreras, M. H. Farías und L. Cota-Araiza. „Stoichiometric tungsten carbide coatings“. In The 8th Latin American congress on surface science: Surfaces , vacuum, and their applications. AIP, 1996. http://dx.doi.org/10.1063/1.51119.
Der volle Inhalt der QuelleIves, Lawrence, George Miram, Lou Falce, Kim Gunther, Marc Curtis, Steve Schwartzkopf und Ron Witherspoon. „Sintered Tungsten Wire Cathodes“. In 2007 IEEE International Vacuum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/ivelec.2007.4283272.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Tungsten"
Dawson, K. M. Skarn tungsten. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/208024.
Der volle Inhalt der QuelleHatfield, Kendrich, Michael McBride und Donald Johnson. Tungsten Electrodeposition. Office of Scientific and Technical Information (OSTI), Oktober 2023. http://dx.doi.org/10.2172/2008256.
Der volle Inhalt der QuelleWohletz, K., T. Kunkle und W. Hawkins. KISMET tungsten dispersal experiment. Office of Scientific and Technical Information (OSTI), Dezember 1996. http://dx.doi.org/10.2172/432871.
Der volle Inhalt der QuelleSinclair, W. D. Vein-stockwork tin, tungsten. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1995. http://dx.doi.org/10.4095/208012.
Der volle Inhalt der QuelleBrau, James E. Silicon-tungsten Electromagnetic Calorimetry. Office of Scientific and Technical Information (OSTI), März 2018. http://dx.doi.org/10.2172/1426488.
Der volle Inhalt der QuelleHughes, A. Australian resource reviews: tungsten 2019. Geoscience Australia, 2020. http://dx.doi.org/10.11636/9781925848731.
Der volle Inhalt der QuelleJoel B. Christian und Sean P. E. Smith. Tungsten Cathode Catalyst for PEMFC. Office of Scientific and Technical Information (OSTI), September 2006. http://dx.doi.org/10.2172/891991.
Der volle Inhalt der QuelleBoyle, Timothy J., Ryan Falcone Hess, Michael Luke Neville und Panit Clifton Howard. Scandium separation from tungsten crucibles :. Office of Scientific and Technical Information (OSTI), Februar 2013. http://dx.doi.org/10.2172/1088104.
Der volle Inhalt der QuelleDandekar, Dattatraya P. Spall Strength of Tungsten Carbide. Fort Belvoir, VA: Defense Technical Information Center, September 2004. http://dx.doi.org/10.21236/ada427318.
Der volle Inhalt der QuelleDannemann, Kathryn, und James Walker. Evaluation of Tungsten Alloy Rods. Fort Belvoir, VA: Defense Technical Information Center, Mai 2000. http://dx.doi.org/10.21236/ada415228.
Der volle Inhalt der Quelle