Zeitschriftenartikel zum Thema „Tumoroïde“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Zeitschriftenartikel für die Forschung zum Thema "Tumoroïde" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Zeitschriftenartikel für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
Yankaskas, Chris, Brittany Balhouse, Colin Paul, Shyanne Salen, Sybelle Djikeng, Pradip Shahi Thakuri, Mark Kennedy, Matt Dallas und David Kuninger. „Abstract 160: Derivation and long-term maintenance of patient-derived tumoroid lines in a defined, serum-free medium“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 160. http://dx.doi.org/10.1158/1538-7445.am2023-160.
Der volle Inhalt der QuelleAlvarez, Janet, Wini Zambare, Chao Wu, Paulina Bleu, Aron Bercz, Baby Satravada, Ritika Kundra et al. „An online rectal cancer tumoroid biorepository: A resource to facilitate multimodal data integration.“ Journal of Clinical Oncology 42, Nr. 3_suppl (20.01.2024): 159. http://dx.doi.org/10.1200/jco.2024.42.3_suppl.159.
Der volle Inhalt der QuelleDanen, Erik H. J. „Abstract 5226: A 3D ECM embedded tumoroid platform for testing antibody drugs and engineered TCRs for immune oncology“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 5226. http://dx.doi.org/10.1158/1538-7445.am2024-5226.
Der volle Inhalt der QuelleZambare, Wini, Chao Wu, Hannah Kalvin, Hanchen Huang, Sara Yoder, Michael Del Latto, Maria Kierstead et al. „Abstract A012: Development of a translational tumoroid-organoid platform revealing tumor-specific radiosensitization in rectal cancer using matched patient-derived models“. Clinical Cancer Research 31, Nr. 2_Supplement (26.01.2025): A012. https://doi.org/10.1158/1557-3265.targetedtherap-a012.
Der volle Inhalt der QuelleTruelsen, Sarah Line Bring, Nabi Mousavi, Haoche Wei, Lucy Harvey, Rikke Stausholm, Erik Spillum, Grith Hagel et al. „The cancer angiogenesis co-culture assay: In vitro quantification of the angiogenic potential of tumoroids“. PLOS ONE 16, Nr. 7 (07.07.2021): e0253258. http://dx.doi.org/10.1371/journal.pone.0253258.
Der volle Inhalt der QuelleYankaskas, Chris, Brittany Balhouse, Colin Paul, Pradip Shahi Thakuri, Shyanne Salen, Mark Kennedy, Matt Dallas und David Kuninger. „Abstract 4251: Establishment of hormone-dependent endometrial tumoroids in a conditioned-medium free, serum-free medium“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 4251. http://dx.doi.org/10.1158/1538-7445.am2024-4251.
Der volle Inhalt der QuelleKim, Sung Min, Yoo Ri Ko, Hye Seon Park und Se Jin Jang. „Abstract 218: Deciphering tumoroid-CAF interactions through a spatially segregated coculture model“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 218. http://dx.doi.org/10.1158/1538-7445.am2024-218.
Der volle Inhalt der QuelleTaha, Eman, Chiharu Sogawa, Yuka Okusha, Hotaka Kawai, May Oo, Abdellatif Elseoudi, Yanyin Lu et al. „Knockout of MMP3 Weakens Solid Tumor Organoids and Cancer Extracellular Vesicles“. Cancers 12, Nr. 5 (16.05.2020): 1260. http://dx.doi.org/10.3390/cancers12051260.
Der volle Inhalt der QuellePaul, Colin, Anthony Chatman, Amber Bullock, Xiaoyu Jenny Yang, Garrett Wong, Brittany Balhouse, Chris Yankaskas, Erik Willems, Matt Dallas und David Kuninger. „Abstract 2047: Scale up and scale down approaches for screening of 3D patient-derived cell models“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 2047. http://dx.doi.org/10.1158/1538-7445.am2024-2047.
Der volle Inhalt der QuelleSogawa, Chiharu, Takanori Eguchi, Yuri Namba, Yuka Okusha, Eriko Aoyama, Kazumi Ohyama und Kuniaki Okamoto. „Gel-Free 3D Tumoroids with Stem Cell Properties Modeling Drug Resistance to Cisplatin and Imatinib in Metastatic Colorectal Cancer“. Cells 10, Nr. 2 (06.02.2021): 344. http://dx.doi.org/10.3390/cells10020344.
Der volle Inhalt der QuelleScholtes, Mathijs P., Maryam Akbarzadeh, Shahla Romal, Miranda van Dijk, Tsung Wai Kan, Tokameh Mahmoudi und Tahlita C. Zuiverloon. „Abstract 2852: Targeting NPEPPS overcomes cisplatin resistance in patient-derived bladder cancer tumoroids“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 2852. http://dx.doi.org/10.1158/1538-7445.am2023-2852.
Der volle Inhalt der QuelleBalhouse, Brittany, Chris Yankaskas, Colin Paul, Shyanne Salen, Sylvia Beam, Pradip Shahi Thakuri, Matt Dallas und David Kuninger. „Abstract 227: Novel and easy-to-use approach to triple-negative breast cancer tumoroid culture“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 227. http://dx.doi.org/10.1158/1538-7445.am2024-227.
Der volle Inhalt der QuelleJensen, Lars Henrik, Anders Kristian Moeller Jakobsen, Birgitte Mayland Havelund, Cecilie Abildgaard, Chris Vagn-Hansen, Claus Dam, Jan Lindebjerg et al. „Functional precision medicine in colorectal cancer based on patient-derived tumoroids and in-vitro sensitivity drug testing.“ Journal of Clinical Oncology 39, Nr. 15_suppl (20.05.2021): e15567-e15567. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e15567.
Der volle Inhalt der QuelleNikolov, Ekaterina, Oksana Sirenko, Matthew Hammer, Courtney Brock, Anthony Thai, Matthew Burow, Bridgette Collins-Burow und Evan Cromwell. „Abstract 185: Monitoring metabolite dynamics in patient-derived tumoroids using automated microfluidic Pu·MA System“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 185. http://dx.doi.org/10.1158/1538-7445.am2022-185.
Der volle Inhalt der QuelleMeulenbroeks, Chris, Phylicia Stathi, Marc van de Wetering, Chio Carranza Villarejo, Norman Mack, Benjamin Schwalm, Neal Geisemeyer et al. „MDB-68. DISCOVERING DRUG SENSITIVITIES IN MEDULLOBLASTOMA USING PATIENT- AND PDX-DERIVED TUMOROIDS“. Neuro-Oncology 26, Supplement_4 (18.06.2024): 0. http://dx.doi.org/10.1093/neuonc/noae064.517.
Der volle Inhalt der QuellePaul, Colin, Brittany Balhouse, Chris Yankaskas, Shyanne Salen, Sybelle Djikeng, Pradip Shahi Thakuri, Matt Dallas und David Kuninger. „Abstract 177: Expansion of established patient-derived tumoroids in a novel serum-free, Wnt-free media system“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 177. http://dx.doi.org/10.1158/1538-7445.am2023-177.
Der volle Inhalt der QuelleLê, Hélène, Joseph Seitlinger, Véronique Lindner, Anne Olland, Pierre-Emmanuel Falcoz, Nadia Benkirane-Jessel und Eric Quéméneur. „Patient-Derived Lung Tumoroids—An Emerging Technology in Drug Development and Precision Medicine“. Biomedicines 10, Nr. 7 (12.07.2022): 1677. http://dx.doi.org/10.3390/biomedicines10071677.
Der volle Inhalt der QuelleRuedlinger, Brittney, Seth Currlin, Sharon Camacho, Alliyah Humphrey, Jared Ehrhart und Soner Altiok. „Abstract 4557: 3D-EXpress platform utilizing tumoroids from patients with MSS and MSI-H tumors allows rapid assessment of anti-tumor activity of immune checkpoint inhibitors and development of clinically relevant biomarkers of treatment response“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4557. http://dx.doi.org/10.1158/1538-7445.am2023-4557.
Der volle Inhalt der QuellePaul, Colin, Amber Bullock, Anthony Chatman, Brittany Balhouse, Chris Yankaskas, Pradip Shahi Thakuri, Matt Dallas und David Kuninger. „Abstract 4233: Rapid and robust generation of ex vivo tumoroid samples from fresh patient samples in a serum-free, conditioned medium-free system“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 4233. http://dx.doi.org/10.1158/1538-7445.am2024-4233.
Der volle Inhalt der QuelleCurrlin, Seth, Brittney Ruedlinger, Sharon Camacho, Angie Rivera, Jasmin D'Andrea, Jared Ehrhart und Soner Altiok. „Abstract 4552: 3D-EXplore platform of fresh patient tumoroids with intact TME allows assessment of the efficacy of drugs targeting the tumor stroma on ex vivo tumor immunotherapy“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4552. http://dx.doi.org/10.1158/1538-7445.am2023-4552.
Der volle Inhalt der QuelleMalmros, Karina, Daniel Carlsén und Hans Brunnström. „Abstract 7561: Standardized conditions for growth of lung cancer tumoroids cultured reproducibly in 3D-cultures“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 7561. http://dx.doi.org/10.1158/1538-7445.am2024-7561.
Der volle Inhalt der QuellePaul, Colin D., Amber Bullock, Anthony Chatman, Km Shams Ud Doha, Harrison Leong, Sylvia Beam, Chris Yankaskas, Pradip Shahi Thakuri, Matt Dallas und David Kuninger. „Abstract B017: An integrated workflow for multiomic characterization and functional precision medicine testing of solid tumor samples“. Cancer Research 85, Nr. 5_Supplement (11.03.2025): B017. https://doi.org/10.1158/1538-7445.genfunc25-b017.
Der volle Inhalt der QuelleAkbaba, Cihat Ediz, Adem Polat und Dilek Göktürk. „Tracing 2D Growth of Pancreatic Tumoroids Using the Combination of Image Processing Techniques and Mini-Opto Tomography Imaging System“. Technology in Cancer Research & Treatment 22 (Januar 2023): 153303382311642. http://dx.doi.org/10.1177/15330338231164267.
Der volle Inhalt der QuelleYang, Xiaoyu, Andrew Tsao, Garrett Wong, Chris Yankaskas, Colin Paul, Brittany Balhouse, Amber Bullock et al. „Abstract 2750: Multiplexed plate-reader based drug screening of 3D-tumoroid models“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 2750. http://dx.doi.org/10.1158/1538-7445.am2023-2750.
Der volle Inhalt der QuelleSogawa, Chiharu, Takanori Eguchi, Manh Tien Tran, Masayuki Ishige, Kilian Trin, Yuka Okusha, Eman Ahmed Taha et al. „Antiparkinson Drug Benztropine Suppresses Tumor Growth, Circulating Tumor Cells, and Metastasis by Acting on SLC6A3/DAT and Reducing STAT3“. Cancers 12, Nr. 2 (24.02.2020): 523. http://dx.doi.org/10.3390/cancers12020523.
Der volle Inhalt der QuelleBalhouse, Brittany N., Colin Paul, Chris Yankaskas, Shyanne Salen, Sybelle Djikeng, Pradip Shahi Thakuri, Anthony Chatman, Amber Bullock, Matthew Dallas und David Kuninger. „Abstract 158: How low can you go: Maintenance of tumoroid phenotype with a highly scalable and automation-compatible reduced-ECM suspension culture method“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 158. http://dx.doi.org/10.1158/1538-7445.am2023-158.
Der volle Inhalt der QuelleArya, Neha, Viren Sardana, Meera Saxena, Annapoorni Rangarajan und Dhirendra S. Katti. „Recapitulating tumour microenvironment in chitosan–gelatin three-dimensional scaffolds: an improved in vitro tumour model“. Journal of The Royal Society Interface 9, Nr. 77 (12.09.2012): 3288–302. http://dx.doi.org/10.1098/rsif.2012.0564.
Der volle Inhalt der QuelleYang, Cian-Ru, Chu-Ting Liang, Shih-Chieh Tsai, Yu-Chun Wu, Ching-Wen Liu, Hui-Hua Yang, Ting-Yuan Tu et al. „A Novel 3D Culture Scaffold to Shorten Development Time for Multicellular Tumor Spheroids“. International Journal of Molecular Sciences 23, Nr. 22 (12.11.2022): 13962. http://dx.doi.org/10.3390/ijms232213962.
Der volle Inhalt der QuelleSanders, Karin, Femke C. A. Ringnalda, Marc L. van de Wetering, Hans S. Kooistra, Björn P. Meij, Hans Clevers und Sara Galac. „Canine Pituitary Organoids as 3D In Vitro Model for Cushing Disease“. Journal of the Endocrine Society 5, Supplement_1 (01.05.2021): A533. http://dx.doi.org/10.1210/jendso/bvab048.1085.
Der volle Inhalt der QuelleWaterman-Smith, Jonathan P., Jared Ehrhart, Brittany Bunch, Krithika Kodumudi, Matt Weitzman, Olivia MacIntosh, Kelly Sussman und Soner Altiok. „Abstract 288: An ex-vivo 3D tumoroid model of fresh patient tissue (3D-EXplore) to assess transcriptional and compositional changes of the immune landscape in intact tumor microenvironment using single-cell proteogenomics“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 288. http://dx.doi.org/10.1158/1538-7445.am2022-288.
Der volle Inhalt der QuelleLi, Haifeng, Wen Gao, Ruixue Liu und Xiaonan Han. „Abstract 2450: Transforming intestinal stem cells into metastatic cancer Stem cells by aberrantly activated cytokine-STAT5A signaling“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 2450. http://dx.doi.org/10.1158/1538-7445.am2023-2450.
Der volle Inhalt der QuelleRobben, Stijn, Anais Peyron, Ana Rita Ribeiro, Divyasree Prabhakaran, Antoni Homs Corbera, Pierre Gaudriault, Patricia Davidson und Dario Fassini. „Abstract 193: A high throughput vascularized immunocompetent tumoroids model in a standard multiwell plate for precision oncology“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 193. http://dx.doi.org/10.1158/1538-7445.am2023-193.
Der volle Inhalt der QuelleEhrhart, Jared, Seth Currlin, Sharon Camacho, Samantha Hoffman, Angie Rivera und Soner Altiok. „Abstract 4572: 3D-EXpress ex vivo platform using a biorepository of characterized fresh patient tumoroids allows development of rational combinations with drugs targeting DNA damage response and immune checkpoint blockade“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4572. http://dx.doi.org/10.1158/1538-7445.am2023-4572.
Der volle Inhalt der QuelleKodumudi, Krithika Nandakumar, Brittany Bunch, Jared Ehrhart, Matt Weitzman, Olivia MacIntosh, Kelly Sussman und Soner Altiok. „Abstract 239: Assessment of immunotherapeutic efficacy of entinostat by using the 3d-explore ex vivo platform utilizing tumoroids of fresh patient tumor samples with intact tumor microenvironment“. Cancer Research 82, Nr. 12_Supplement (15.06.2022): 239. http://dx.doi.org/10.1158/1538-7445.am2022-239.
Der volle Inhalt der QuelleLeto, Simonetta M., Elena Grassi, Marco Avolio, Valentina Vurchio, Francesca Cottino, Martina Ferri, Eugenia R. Zanella et al. „Abstract 219: Molecular and therapeutic characterization of a large-scale collection of metastatic colorectal cancer patient-derived xenografts and matched organoids for translational oncology“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 219. http://dx.doi.org/10.1158/1538-7445.am2024-219.
Der volle Inhalt der QuelleMora-Lagos, Bárbara, María Elena Reyes, Lorena Lobos-Gonzalez, Matías del Campo, Carmen Gloria Ili, Kurt Buchegger, Yuselin Mora, Louise Zanella, Ismael Riquelme und Priscilla Brebi. „Abstract 1749: The synergic effect of cisplatin and a chemokine receptor antagonist sensitizes drug resistant gastric cancer cells and inhibits tumoroid formation“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 1749. http://dx.doi.org/10.1158/1538-7445.am2023-1749.
Der volle Inhalt der QuelleHorowitz, Nina Beryl, John Hickey, Garry P. Nolan und John B. Sunwoo. „Overcoming barriers to solid tumor immunotherapy using natural killer cell therapies designed to mimic intraepithelial group 1 innate lymphoid cells“. Journal of Immunology 208, Nr. 1_Supplement (01.05.2022): 122.10. http://dx.doi.org/10.4049/jimmunol.208.supp.122.10.
Der volle Inhalt der QuelleSinenko, Irina, Fabien Kuttler, Valentin Simeonov, Alexandre Moulin, Christina Stathopoulos, Gerardo Turcatti, Adeline Berger, Francis Munier und Paul Dyson. „Abstract 3541: Tumoroid-based screening platform to test focal, chemo- and combination therapy for retinoblastoma“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 3541. http://dx.doi.org/10.1158/1538-7445.am2023-3541.
Der volle Inhalt der QuelleDeems, Liam, Maria Ivanova, Cheryl Murphy, Amit Shahar, David Deems und Dmitry Shvartsman. „Abstract PO-074: Identification of C-MET receptor as a therapeutic target in patient-specific tumoroid models of metastatic pancreatic adenocarcinoma allows identification of a new mode of action for its inhibitors“. Cancer Research 81, Nr. 22_Supplement (15.11.2021): PO—074—PO—074. http://dx.doi.org/10.1158/1538-7445.panca21-po-074.
Der volle Inhalt der QuelleAyehunie, Seyoum, Megan Groves, Bryda Bryda, Alex Armento und Anthony Tolcher. „Abstract 221: Novel organotypic patient derived primary tumor tissues for oncology drug safety and efficacy studies“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 221. http://dx.doi.org/10.1158/1538-7445.am2024-221.
Der volle Inhalt der QuelleYang, Xiaoyu, Maryam Mafreshi, Garrett Wong, Vivek Chandra, Colin Paul, Chris Yankaskas, Brittany Balhouse et al. „Abstract 6787: Evaluation of CAR-T cytotoxicity in solid tumors: A screening workflow using 3D patient-derived tumoroids“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 6787. http://dx.doi.org/10.1158/1538-7445.am2024-6787.
Der volle Inhalt der QuelleEhrhart, Jared, Seth Currlin, Michelle Ataya, Alliyah Humphrey und Rikhia Chakraborty. „Abstract 951: 3D-PREDICT - An ex vivo precision oncology and clinical trial enrichment platform by Nilogen Oncosystems“. Cancer Research 84, Nr. 6_Supplement (22.03.2024): 951. http://dx.doi.org/10.1158/1538-7445.am2024-951.
Der volle Inhalt der QuelleKreahling, Jenny, Jared Ehrhart, Mibel Pabon, Stephen Iwanowycz, Tina Pastoor und Soner Altiok. „619 Evaluating the effectiveness of targeted ADC therapy in a patient-derived ex vivo tumoroid model, 3D-EX, for quantitative tumor cell killing“. Journal for ImmunoTherapy of Cancer 8, Suppl 3 (November 2020): A655. http://dx.doi.org/10.1136/jitc-2020-sitc2020.0619.
Der volle Inhalt der QuelleEhrhart, Jared, Brittney Ruedlinger, Angie Rivera, Romanus Ezeoke, Sharon Camacho, Seth Currlin und Soner Altiok. „Abstract 4571: A novel ex vivo platform, 3D-EXpress, to rapidly assess the efficacy of KRAS targeting drugs alone and in combination with nivolumab using a biorepository of fresh patient tumoroids with intact tumor microenvironment“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 4571. http://dx.doi.org/10.1158/1538-7445.am2023-4571.
Der volle Inhalt der QuelleDaszkiewicz, Lidia, Maarten Klop, Kuan Yan und Leo Price. „A 3D image-based quantification of immune cell-tumor spheroid interactions in the presence of checkpoint inhibition.“ Journal of Clinical Oncology 35, Nr. 7_suppl (01.03.2017): 82. http://dx.doi.org/10.1200/jco.2017.35.7_suppl.82.
Der volle Inhalt der QuelleTsao, Andrew, Xiaoyu Yang, Garrett Wong, Vivek Chandra, Jacob Delgadillo, Lindsay Bailey Steinitz, Brittany Balhouse et al. „Abstract 2753: Engineering patient-derived tumors to enable high-throughput screening: Immuno-oncology workflows“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 2753. http://dx.doi.org/10.1158/1538-7445.am2023-2753.
Der volle Inhalt der QuelleHorowitz, Nina, John Hickey und John Sunwoo. „181 Intraepithelial group 1 innate lymphoid cells generated in vitro exhibit enhanced cytotoxicity and infiltration into solid tumoroids“. Journal for ImmunoTherapy of Cancer 9, Suppl 2 (November 2021): A193. http://dx.doi.org/10.1136/jitc-2021-sitc2021.181.
Der volle Inhalt der QuelleGowrikumar, Saiprasad, Mark Primeaux, Kristina Pravoverov, Chao Wu, Bryan C. Szeglin, Charles-Etienne Gabriel Sauvé, Ishwor Thapa et al. „A Claudin-Based Molecular Signature Identifies High-Risk, Chemoresistant Colorectal Cancer Patients“. Cells 10, Nr. 9 (26.08.2021): 2211. http://dx.doi.org/10.3390/cells10092211.
Der volle Inhalt der QuelleBunch, Brittany, Autumn Joerger, Nino Mtchedlidze, Olivia Hoff, Kelly Guzman, Jared Ehrhart und Soner Altiok. „759 Single-Cell Proteogenomics (Cite-seq) analysis of cGAS-STING pathway activation alone and in combination with nivolumab using a patient-derived 3D ex vivo tumoroid platform“. Journal for ImmunoTherapy of Cancer 9, Suppl 2 (November 2021): A794. http://dx.doi.org/10.1136/jitc-2021-sitc2021.759.
Der volle Inhalt der QuelleSingh, Surya P., Gopal Pathuri, Adam Asch, Brian Cholewa, Robert Shoemaker, Chinthalapally V. Rao und Venkateshwar Madka. „Abstract 5255: Effect of STAT3 inhibitors, TTI-101 and SH5-07, against bladder cancer in preclinical 3D tumor models“. Cancer Research 83, Nr. 7_Supplement (04.04.2023): 5255. http://dx.doi.org/10.1158/1538-7445.am2023-5255.
Der volle Inhalt der Quelle