Dissertationen zum Thema „Tree data“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit Top-50 Dissertationen für die Forschung zum Thema "Tree data" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Sehen Sie die Dissertationen für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.
MacKinnon, Richard Kyle. „Seeing the forest for the trees: tree-based uncertain frequent pattern mining“. Springer International Publishing, 2014. http://hdl.handle.net/1993/31059.
Der volle Inhalt der QuelleFebruary 2016
Ahmad, Amir. „Data Transformation for Decision Tree Ensembles“. Thesis, University of Manchester, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.508528.
Der volle Inhalt der QuelleDa, San Martino Giovanni <1979>. „Kernel Methods for Tree Structured Data“. Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2009. http://amsdottorato.unibo.it/1400/.
Der volle Inhalt der QuelleLiu, Dan. „Tree-based Models for Longitudinal Data“. Bowling Green State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1399972118.
Der volle Inhalt der QuelleCsank, Adam Z. „Research Communication: An International Tree-Ring Isotope Data Bank- A Proposed Repository For Tree-Ring Isotopic Data“. Tree-Ring Society, 2009. http://hdl.handle.net/10150/622606.
Der volle Inhalt der QuelleKing, Stuart. „Optimizations and applications of Trie-Tree based frequent pattern mining“. Diss., Connect to online resource - MSU authorized users, 2006.
Den vollen Inhalt der Quelle findenTitle from PDF t.p. (viewed on June 19, 2009) Includes bibliographical references (p. 79-80). Also issued in print.
Rizo, David. „Symbolic music comparison with tree data structures“. Doctoral thesis, Universidad de Alicante, 2010. http://hdl.handle.net/10045/18331.
Der volle Inhalt der QuelleEvans, Margaret E. K., Donald A. Falk, Alexis Arizpe, Tyson L. Swetnam, Flurin Babst und Kent E. Holsinger. „Fusing tree-ring and forest inventory data to infer influences on tree growth“. WILEY, 2017. http://hdl.handle.net/10150/625361.
Der volle Inhalt der QuelleFaustino, Bruno Filipe Fernandes Simões Salgueiro. „Implementation for spatial data of the shared nearest neighbour with metric data structures“. Master's thesis, Faculdade de Ciências e Tecnologia, 2012. http://hdl.handle.net/10362/8489.
Der volle Inhalt der QuelleAlizadeh, Khameneh Mohammad Amin. „Tree Detection and Species Identification using LiDAR Data“. Thesis, KTH, Geodesi och geoinformatik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-119269.
Der volle Inhalt der QuelleTsang, Pui-kwan Smith, und 曾沛坤. „Efficient decision tree building algorithms for uncertain data“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41290719.
Der volle Inhalt der QuelleTsang, Pui-kwan Smith. „Efficient decision tree building algorithms for uncertain data“. Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41290719.
Der volle Inhalt der QuelleGupta, Suraj. „Metagenomic Data Analysis Using Extremely Randomized Tree Algorithm“. Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/96025.
Der volle Inhalt der QuelleMS
Igboamalu, Frank Nonso. „Decision tree classifiers for incident call data sets“. Master's thesis, University of Cape Town, 2017. http://hdl.handle.net/11427/27076.
Der volle Inhalt der QuelleChu, Chung Cheung. „Tree encoding of speech signals at low bit rates“. Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=65459.
Der volle Inhalt der QuelleFlöter, André. „Analyzing biological expression data based on decision tree induction“. Phd thesis, Universität Potsdam, 2005. http://opus.kobv.de/ubp/volltexte/2006/641/.
Der volle Inhalt der QuelleModern biological analysis techniques supply scientists with various forms of data. One category of such data are the so called "expression data". These data indicate the quantities of biochemical compounds present in tissue samples.
Recently, expression data can be generated at a high speed. This leads in turn to amounts of data no longer analysable by classical statistical techniques. Systems biology is the new field that focuses on the modelling of this information.
At present, various methods are used for this purpose. One superordinate class of these methods is machine learning. Methods of this kind had, until recently, predominantly been used for classification and prediction tasks. This neglected a powerful secondary benefit: the ability to induce interpretable models.
Obtaining such models from data has become a key issue within Systems biology. Numerous approaches have been proposed and intensively discussed. This thesis focuses on the examination and exploitation of one basic technique: decision trees.
The concept of comparing sets of decision trees is developed. This method offers the possibility of identifying significant thresholds in continuous or discrete valued attributes through their corresponding set of decision trees. Finding significant thresholds in attributes is a means of identifying states in living organisms. Knowing about states is an invaluable clue to the understanding of dynamic processes in organisms. Applied to metabolite concentration data, the proposed method was able to identify states which were not found with conventional techniques for threshold extraction.
A second approach exploits the structure of sets of decision trees for the discovery of combinatorial dependencies between attributes. Previous work on this issue has focused either on expensive computational methods or the interpretation of single decision trees a very limited exploitation of the data. This has led to incomplete or unstable results. That is why a new method is developed that uses sets of decision trees to overcome these limitations.
Both the introduced methods are available as software tools. They can be applied consecutively or separately. That way they make up a package of analytical tools that usefully supplement existing methods.
By means of these tools, the newly introduced methods were able to confirm existing knowledge and to suggest interesting and new relationships between metabolites.
Neuere biologische Analysetechniken liefern Forschern verschiedenste Arten von Daten. Eine Art dieser Daten sind die so genannten "Expressionsdaten". Sie geben die Konzentrationen biochemischer Inhaltsstoffe in Gewebeproben an.
Neuerdings können Expressionsdaten sehr schnell erzeugt werden. Das führt wiederum zu so großen Datenmengen, dass sie nicht mehr mit klassischen statistischen Verfahren analysiert werden können. "System biology" ist eine neue Disziplin, die sich mit der Modellierung solcher Information befasst.
Zur Zeit werden dazu verschiedenste Methoden benutzt. Eine Superklasse dieser Methoden ist das maschinelle Lernen. Dieses wurde bis vor kurzem ausschließlich zum Klassifizieren und zum Vorhersagen genutzt. Dabei wurde eine wichtige zweite Eigenschaft vernachlässigt, nämlich die Möglichkeit zum Erlernen von interpretierbaren Modellen.
Die Erstellung solcher Modelle hat mittlerweile eine Schlüsselrolle in der "Systems biology" erlangt. Es sind bereits zahlreiche Methoden dazu vorgeschlagen und diskutiert worden. Die vorliegende Arbeit befasst sich mit der Untersuchung und Nutzung einer ganz grundlegenden Technik: den Entscheidungsbäumen.
Zunächst wird ein Konzept zum Vergleich von Baummengen entwickelt, welches das Erkennen bedeutsamer Schwellwerte in reellwertigen Daten anhand ihrer zugehörigen Entscheidungswälder ermöglicht. Das Erkennen solcher Schwellwerte dient dem Verständnis von dynamischen Abläufen in lebenden Organismen. Bei der Anwendung dieser Technik auf metabolische Konzentrationsdaten wurden bereits Zustände erkannt, die nicht mit herkömmlichen Techniken entdeckt werden konnten.
Ein zweiter Ansatz befasst sich mit der Auswertung der Struktur von Entscheidungswäldern zur Entdeckung von kombinatorischen Abhängigkeiten zwischen Attributen. Bisherige Arbeiten hierzu befassten sich vornehmlich mit rechenintensiven Verfahren oder mit einzelnen Entscheidungsbäumen, eine sehr eingeschränkte Ausbeutung der Daten. Das führte dann entweder zu unvollständigen oder instabilen Ergebnissen. Darum wird hier eine Methode entwickelt, die Mengen von Entscheidungsbäumen nutzt, um diese Beschränkungen zu überwinden.
Beide vorgestellten Verfahren gibt es als Werkzeuge für den Computer, die entweder hintereinander oder einzeln verwendet werden können. Auf diese Weise stellen sie eine sinnvolle Ergänzung zu vorhandenen Analyswerkzeugen dar.
Mit Hilfe der bereitgestellten Software war es möglich, bekanntes Wissen zu bestätigen und interessante neue Zusammenhänge im Stoffwechsel von Pflanzen aufzuzeigen.
Koneri, Kiran Kumar. „Implementation of Collection Tree Protocol over WirelessHART Data-Link“. Thesis, Tekniska Högskolan, Högskolan i Jönköping, JTH, Data- och elektroteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-15665.
Der volle Inhalt der QuelleDe, La Fuente Jesus Miguel. „Visualization in Genealogical Data : Genealogical tree application for Facebook“. Thesis, Linnéuniversitetet, Institutionen för datavetenskap, fysik och matematik, DFM, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-13991.
Der volle Inhalt der QuelleNegassa, Abdissa. „Validation of tree-structured prediction for censored survival data“. Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=40407.
Der volle Inhalt der QuelleBackground. In the tree-growing literature, a number of computationally inexpensive model selection criteria were suggested; however, none of them were systematically investigated for their performance. RECursive Partition and AMalgamation (RECPAM) is one of the existing tree-growing algorithms that provide such built-in model selection criteria. Application of RECPAM's different model selection criteria leads to a wide range of models (40). Since RECPAM is an exploratory data analysis tool, it is desirable to reduce its computational cost and establish the general properties of its model selection criteria so that clear guidelines can be suggested.
Methods. A computationally efficient tree-growing algorithm for prognostic classification and subgroup analysis is developed by employing the Cox score statistic and the Mantel-Haenszel estimator of the relative hazard. Two validation schemes, restricting validation to pruning and parameter estimation and validating the whole process of tree growing, are implemented and evaluated in simulation. Three model selection criteria--the elbow approach, minimum Akaike Information Criterion (AIC), and the one standard error (ISE) rule--were compared to cross-validation under a broad range of scenarios using simulation. Examples of medical data analyses are presented.
Conclusions. A gain in computational efficiency is achieved while obtaining the same result as the original RECPAM approach. The restricted validation scheme is computationally less expensive, however, it is biased. In the case of subgroup analysis, to adjust properly for influential prognostic factors, we suggest constructing a prognostic classification on such factors and using the resulting classification as strata in conducting the subgroup analysis. None of the model selection criteria studied exhibit a consistently superior performance over the range of scenarios considered here. Therefore, we propose a two-stage model selection strategy in which cross-validation is employed at the first step, and if according to this step there is evidence of structure in the data set, then the elbow rule is recommended in the second step.
Flöter, André. „Analyzing biological expression data based on decision tree induction“. [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=978444728.
Der volle Inhalt der QuelleMondy, William Lafayette. „Data acquisition for modeling and visualization of vascular tree“. [Tampa, Fla] : University of South Florida, 2009. http://purl.fcla.edu/usf/dc/et/SFE0003082.
Der volle Inhalt der QuelleMangalvedkar, Pallavi Ramachandra. „GPU-ASSISTED RENDERING OF LARGE TREE-SHAPED DATA SETS“. Wright State University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=wright1195491112.
Der volle Inhalt der QuelleKällström, Johan. „Building and Tree Parameterization in Partiallyoccluded 2.5D DSM Data“. Thesis, Linköpings universitet, Institutionen för systemteknik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-125130.
Der volle Inhalt der QuelleBadulescu, Laviniu Aurelian. „ATTRIBUTE SELECTION MEASURE IN DECISION TREE GROWING“. Universitaria Publishing House, 2007. http://hdl.handle.net/10150/105610.
Der volle Inhalt der QuelleMori, Tomoya. „Methods for Analyzing Tree-Structured Data and their Applications to Computational Biology“. 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/202741.
Der volle Inhalt der QuelleYu, Ping. „FP-tree Based Spatial Co-location Pattern Mining“. Thesis, University of North Texas, 2005. https://digital.library.unt.edu/ark:/67531/metadc4724/.
Der volle Inhalt der QuelleMoss, Graeme E. „Benchmarking purely functional data structures“. Thesis, University of York, 2000. http://etheses.whiterose.ac.uk/10869/.
Der volle Inhalt der QuelleBen, Hafaiedh Khaled. „Studying the Properties of a Distributed Decentralized b+ Tree with Weak-Consistency“. Thèse, Université d'Ottawa / University of Ottawa, 2012. http://hdl.handle.net/10393/20578.
Der volle Inhalt der QuelleWunder, Jan. „Conceptual advancement and ecological applications of tree mortality models based on tree-ring and forest inventory data /“. Zürich : ETH, 2007. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=17197.
Der volle Inhalt der QuelleBrewer, Peter W., Daniel Murphy und Esther Jansma. „Tricycle: A Universal Conversion Tool For Digital Tree-Ring Data“. Tree-Ring Society, 2011. http://hdl.handle.net/10150/622638.
Der volle Inhalt der QuelleLundkvist, Emil. „Decision Tree Classification and Forecasting of Pricing Time Series Data“. Thesis, KTH, Reglerteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-151017.
Der volle Inhalt der QuelleRolin), Cheng David R. (David. „Parallel sorting and Star-P data movement and tree flattening“. Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/33117.
Der volle Inhalt der QuelleIncludes bibliographical references (p. 81-84).
This thesis studies three problems in the field of parallel computing. The first result provides a deterministic parallel sorting algorithm that empirically shows an improvement over two sample sort algorithms. When using a comparison sort, this algorithm is 1-optimal in both computation and communication. The second study develops some extensions to the Star-P system [7, 6] that allows it to solve more real problems. The timings provided indicate the scalability of the implementations on some systems. The third problem concerns automatic parallelization. By representing a computation as a binary tree, which we assume is given, it can be shown that the height corresponds to the parallel execution time, given enough processors. The main result of the chapter is an algorithm that uses tree rotations to reduce the height of an arbitrary binary tree to become logarithmic in the number of its inputs. This method can solve more general problems as the definition of tree rotation is slightly altered; examples are given that derive the parallel prefix algorithm, and give a speedup in the dynamic programming approach to the computation of Fibonacci numbers.
by David R. Cheng.
M.Eng.
Hassan, Diman. „A tree-based measure for hierarchical data in mixed databases“. Thesis, University of Nottingham, 2016. http://eprints.nottingham.ac.uk/34652/.
Der volle Inhalt der QuelleChippa, Mukesh Kumar. „Performance of Tree-Based Data Collection in Wireless Sensor Systems“. University of Akron / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=akron1312209206.
Der volle Inhalt der QuelleFan, Hang. „Species Tree Likelihood Computation Given SNP Data Using Ancestral Configurations“. The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1385995244.
Der volle Inhalt der QuelleBeltur, Bharat Ramachandra. „Adaptive Slicing in Additive Manufacturing using Strip Tree Data Structures“. University of Cincinnati / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1479815018228663.
Der volle Inhalt der QuelleGIESKE, EDMUND J. „B+ TREE CACHE MEMORY PERFORMANCE“. University of Cincinnati / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1092344402.
Der volle Inhalt der Quelle宋永健 und Wing-kin Sung. „Fast labeled tree comparison via better matching algorithms“. Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1998. http://hub.hku.hk/bib/B31239316.
Der volle Inhalt der QuelleSung, Wing-kin. „Fast labeled tree comparison via better matching algorithms /“. Hong Kong : University of Hong Kong, 1998. http://sunzi.lib.hku.hk/hkuto/record.jsp?B20229999.
Der volle Inhalt der QuelleAgarwal, Khushbu. „A partition based approach to approximate tree mining a memory hierarchy perspective /“. Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196284256.
Der volle Inhalt der QuelleSerra-Diaz, Josep M., Brian J. Enquist, Brian Maitner, Cory Merow und Jens-C. Svenning. „Big data of tree species distributions: how big and how good?“ SPRINGER HEIDELBERG, 2018. http://hdl.handle.net/10150/626611.
Der volle Inhalt der QuelleNorelius, Jenny, und Antonello Tacchi. „Evaluating data structures for range queries in brain simulations“. Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229767.
Der volle Inhalt der QuelleVår hjärna och nervsystem är ett grundläggande organ för oss. Det är där ifrån våra tankar, personligheter och mentala kapaciteter kommer ifrån. Inom neurovetenskap är en vanlig forskningsmetod att köra storskaliga hjärnsimuleringar där hundratusentals neuroner används för att skapa en modell av hjärnan i 3D. För att hitta alla neuroner inom en viss area används en så kallad intervallfråga. En stor mängd intervallfrågor behövs för hjärnsimuleringar vilket gör det viktigt att datastrukturerna som används för detta är kostnadseffektiva. Denna studie har som mål att jämföra tre stycken vanliga datastrukturer som används för intervallfrågor. Dessa är R-tree, Quadtree och R*-tree. Deras prestanda testas för exekveringstid, antal läsningar, konstruktionstid, samt storlek och densitet på neuroner. För att skapa hjärnsimuleringen används en typisk neuron som standard sådant att dess karakteristiska egenskaper bevaras. Resultaten från studien visar att R*-tree hade den tydligt bästa prestandan för de givna kriterierna, och att Quadtree har en något bättre prestanda än R-tree. Tiden det tar att mata in neuronerna i datastrukturerna är i stort sett densamma.
Curtin, Ryan Ross. „Improving dual-tree algorithms“. Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/54354.
Der volle Inhalt der QuelleKim, Seoung Bum. „Data Mining in Tree-Based Models and Large-Scale Contingency Tables“. Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/6825.
Der volle Inhalt der QuelleMarrón, Vida Diego. „Improving decision tree and neural network learning for evolving data-streams“. Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/668371.
Der volle Inhalt der QuelleProcesar grandes flujos de datos (Big Data Streams, BDS) en tiempo real requiere el uso de algoritmos incrementales rápidos que mantengan los modelos consistentes con los datos más recientes. En este escenario, los Hoeffding Trees (HT) se consideran el clasificador simple más avanzado para procesar BDS, razon por la cual son ampliamente usados como base a la hora de combinar clasificadores en Ensembles. Esta tesis está dedicada a la mejora del rendimiento de algoritmos para Machine Learning/Iteligencia Artificial en BDS que evolucionan con el tiempo (es decir, BDS cuya distribución estadística cambia con el tiempo). En particular, nuestro objetivo es mejorar el Hoeffding Tree y sus combinaciones en Ensembles, con el objetivo de reducir el consumo de recursos y la latencia en el tiempo de respuesta, logrando un mejor rendimiento al procesar BDS que evolucionan en el tiempo. Primero, se presenta un estudio sobre el uso de redes neuronales (NN) con parámetros aleatorios como un método alternativo para procesar BDS con el objetivo de mejorar la velocidad de entrenamiento de Nns. También se destacan problemas importantes derivados del uso de NN para BDS. Como consecuencia, esta tesis tomo la dirección de mejorar los métodos de vanguardia en BDS: Hoeffding Trees y sus combinaciones en Ensembles. Segundo, se propone el Echo State Hoeffding Tree (ESHT), como una extensión del HT para modelar las dependencias temporales típicamente presentes en BDS. La nueva arquitectura propuesta se evalúa tanto en problemas de regresión como de clasificación. Tercero, se propone una extensión para el Adaptive Random Forest (ARF), publicado recientemente y considerado como el clasificador mas potente implementado en MOA (un framework muy popular para procesar BDS). Proponemos el Elastic Swap Random Forest para reducir el número de clasificadores en el ensemble a un tercio en promedio, al tiempo se mantiene un accuracy similar a la de un ARF estándar con 100 árboles. Finalmente, la última contribución de esta tesis es una arquitectura de Ensembles multi hilo para procesar BDS. Nuestro diseño es altamente adaptable a una variedad de plataformas de hardware, que van desde servidores hasta pequeños dispositivos en el Edge Computing (pej, Internet de las Cosas). El diseño propuesto logra mejoras de rendimiento de 85x (Intel i7), 143x (análisis de Intel Xeon desde la memoria), 10x (Jetson TX1, ARM) y 23x (X-Gene2, ARM) en comparación con MOA (un solo proceso) en un Intel i7. Además, la propuesta logra una eficiencia paralela del 75 \% cuando se usan 24 núcleos en el Intel Xeon.
Al-Jabbouli, Hasan. „Data clustering using the Bees Algorithm and the Kd-tree structure“. Thesis, Cardiff University, 2009. http://orca.cf.ac.uk/54947/.
Der volle Inhalt der QuelleCheng, James Sheung-Chak. „The development of a structural index tree for processing XML data /“. View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?COMP%202004%20CHENG.
Der volle Inhalt der QuelleIncludes bibliographical references (leaves 80-86). Also available in electronic version. Access restricted to campus users.
Towner, Ronald H., und Pearce Paul Creasman. „Tree-ring sample data“. 2010. http://hdl.handle.net/10150/113563.
Der volle Inhalt der QuelleLiu, Yen-Ju, und 劉晏如. „Reconfiguration of Maximum-lifetime Data Gathering Trees with Tree Structure Data Broadcasting in Sensor Network“. Thesis, 2016. http://ndltd.ncl.edu.tw/handle/vsrpj8.
Der volle Inhalt der QuelleTowner, Ronald H., und Pearce Paul Creasman. „Tree-ring data summary by feature“. 2010. http://hdl.handle.net/10150/113593.
Der volle Inhalt der Quelle