Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transverse feedback linearization“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transverse feedback linearization" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transverse feedback linearization"
Nielsen, Christopher, und Manfredi Maggiore. „On Local Transverse Feedback Linearization“. SIAM Journal on Control and Optimization 47, Nr. 5 (Januar 2008): 2227–50. http://dx.doi.org/10.1137/070682125.
Der volle Inhalt der QuelleDoosthoseini, Alireza, und Christopher Nielsen. „Local nested transverse feedback linearization“. Mathematics of Control, Signals, and Systems 27, Nr. 4 (29.08.2015): 493–522. http://dx.doi.org/10.1007/s00498-015-0149-y.
Der volle Inhalt der QuelleD’Souza, Rollen S., und Christopher Nielsen. „An Algorithm for Local Transverse Feedback Linearization“. SIAM Journal on Control and Optimization 61, Nr. 3 (02.06.2023): 1248–72. http://dx.doi.org/10.1137/21m1444588.
Der volle Inhalt der QuelleBanaszuk, Andrzej, und John Hauser. „Feedback linearization of transverse dynamics for periodic orbits“. Systems & Control Letters 26, Nr. 2 (September 1995): 95–105. http://dx.doi.org/10.1016/0167-6911(94)00110-h.
Der volle Inhalt der QuelleFevre, Martin, Bill Goodwine und James P. Schmiedeler. „Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control“. International Journal of Robotics Research 38, Nr. 10-11 (26.08.2019): 1307–23. http://dx.doi.org/10.1177/0278364919870242.
Der volle Inhalt der Quellede Souza Cardoso, Gildeberto, Leizer Schnitman, José Valentim dos Santos Filho und Luiz Carlos Simões Soares Júnior. „Restriction of Transverse Feedback Linearization for Piecewise Linear Paths“. Mathematical Problems in Engineering 2021 (29.01.2021): 1–8. http://dx.doi.org/10.1155/2021/8270793.
Der volle Inhalt der QuelleNielsen, Chris, und Manfredi Maggiore. „Maneuver regulation via transverse feedback linearization: Theory and examples“. IFAC Proceedings Volumes 37, Nr. 13 (September 2004): 57–64. http://dx.doi.org/10.1016/s1474-6670(17)31200-4.
Der volle Inhalt der QuelleNielsen, Christopher. „Transverse Feedback Linearization with Partial Information for Single-Input Systems“. SIAM Journal on Control and Optimization 52, Nr. 5 (Januar 2014): 3002–21. http://dx.doi.org/10.1137/120900149.
Der volle Inhalt der QuelleD’Souza, Rollen S., und Christopher Nielsen. „An exterior differential characterization of single-input local transverse feedback linearization“. Automatica 127 (Mai 2021): 109493. http://dx.doi.org/10.1016/j.automatica.2021.109493.
Der volle Inhalt der QuelleDovgobrod, G. M. „Generation of a highly-smooth desired path for transverse feedback linearization“. Gyroscopy and Navigation 8, Nr. 1 (Januar 2017): 63–67. http://dx.doi.org/10.1134/s2075108717010023.
Der volle Inhalt der QuelleDissertationen zum Thema "Transverse feedback linearization"
Falk, Olson Gustaf. „Power Electronic Stages for a TFPMSM in Wave Power Applications“. Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-194201.
Der volle Inhalt der QuelleDirektdrivna vågenergiomvandlingssystem har utpekats som en potentiellt starkt bidragande resurs för att tillgodose världens efterfrågan på energi med andelar på uppemot 25 % av energimixen förutspådda. Anders Hagnestål bedriver forskning och utveckling av en ny typ av linjär permanentmagnetiserad transversalflödesmaskin vid Kungliga Tekniska Högskolan. Konceptmaskinen är särskilt väl lämpad för de rådande marina förhållandena genom att kunna producera stora krafter vid låga hastigheter med utomordentligt låga resistiva förluster. Maskinen går emellertid i kraftig magnetisk mättnad och drar asymmetriska strömmar vid nominell drift. Dessutom är effektfaktorn låg i jämförelse med standardmaskiner. Alltsomallt inför detta hårda krav på det effektelektroniska systemet och kontrollalgoritmerna. Målet med detta examensarbete har varit att designa ett funktionellt effektkonditioneringssystem som sammanfogar maskinen med det angränsande elektriska nätet. För att åstadkomma detta föreslås att en tvånivås-trefasomriktare kopplas rygg-mot-rygg till tvånivås-enfasomvandlare (aktiva likriktare) som i sin tur är kopplade till varje maskinfas. Med den här konfigurationen visas det att spänningen på den mellanliggande DC-länken kan hållas konstant med begränsat rippel, alltmedan effekt tillförs nätet vid effektfaktor ett genom att dimensionera DC-kondensatorn på rätt sätt och använda en kontrollag baserad på exakt linjärisering. Maskinens fasströmmar kan kontrolleras effektivt med hjälp av en kaskadkopplad PID-regulator med schemalagda förstärkningsfaktorer. Genom att inkludera ett lågpassfilter förväntas det att järnförlusterna i maskinen kan begränsas även vid lägre switchfrekvenser. Genom att lösa ett kostnadsoptimeringsproblem visas det att den resulterande aktiva likriktaren kan uppnå en verkningsgrad på 99.1 %. Slutligen, med det här examensarbetet som grund, föreslås det att den termiska stressen på de valda halvledarkomponentsmodulerna och järnförlusterna i maskinen utvärderas för att ytterligare förbättra designen. Om högre verkningsgrad eftersträvas hos de aktiva likriktarna kan mer komplicerade omvandlartopologier övervägas.
Elobaid, Mohamed. „A sampled-data approach in control problems involving partial dynamics cancellation“. Electronic Thesis or Diss., université Paris-Saclay, 2022. http://www.theses.fr/2022UPASG014.
Der volle Inhalt der QuelleSeveral well studied control problems reduce to asking the output of a given process to track a desired signal while rejecting effects of undesired perturbations. In the rich body of knowledge dealing with problems of this type in continuous-time, the use of partial inversion-based controllers (i.e controllers that cancel part of the dynamics in the sense of rendering it unobservable) and their effectiveness is well established. Nowadays, however, sensing and actuation is done through digital devices so necessitating a suitable control design. In this setting, the control engineer works with systems referred to as sampled-data systems where measures of the output are available only at sporadic discrete-time instants while the control is piecewise constant over a fixed time interval. In this sampled-data context, systems that are originally minimum phase in continuous-time, and because of sampling and holding, may lose this property. The general argument of this thesis contributes to establishing constructive results, procedures and algorithms to the purpose of mitigating the issues caused by sampled-data design under partial inversion-based controllers. Since partial inversion-based controllers typically cancel the zero dynamics, the central idea is to mitigate the loss of the minimum-phase property. A first contribution in this direction stands in proposing a procedure for stable partial inversion for a class of continuous-time non-minimum phase Multi-Input Multi-Output systems. The procedure proposed, generalizing a previous result, works over the linear tangent model of a system factorizing a sub-set of the zero dynamics known to be minimum-phase a priori. This preliminary result is at the basis of control strategies which are herein proposed for model predictive control and digital transverse feedback linearization. Both control strategies under sampling are affected by the above-mentioned pathology linked to the loss of the minimum-phase property. In particular, for model predictive control, two solutions based on multi-rate sampling techniques, employed at the prediction, or the trajectory planning level are proposed and compared. Their validity is established through several case studies ranging from steering and tracking in systems admitting chained forms to quasi Halo orbits station-keeping for space-crafts in the Earth-Moon system. Concerning transverse feedback linearization, two sampled-data solutions preserving the in-variant subset specifying the control objectives are proposed. The former is based on single-rate sampling and, albeit approximate in nature, is computationally simple and outperforms zero-order holding of the continuous-time design. The later, an exact solution based on multi-rate sampling, improves upon the former solution and provides, in special cases, static state feedback solutions even when the problem is only solvable via dynamic feedback in continuous-time. Both solutions are validated over academic case studies as well as in solving path following for mobile robots and periodic orbits stabilization for underactuated mechanical systems
Nielsen, Christopher. „Set Stabilization Using Transverse Feedback Linearization“. Thesis, 2009. http://hdl.handle.net/1807/17810.
Der volle Inhalt der QuelleNielsen, Christopher. „Maneuver regulation, transverse feedback linearization and zero dynamics“. 2004. http://link.library.utoronto.ca/eir/EIRdetail.cfm?Resources__ID=95033&T=F.
Der volle Inhalt der QuelleBücher zum Thema "Transverse feedback linearization"
Nielsen, Christopher. Maneuver regulation, transverse feedback linearization and zero dynamics. 2004.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transverse feedback linearization"
Banaszuk, Andrzej, und John Hauser. „Feedback Linearization of Transverse Dynamics for Periodic Orbits in R3 with Points of Transverse Controllability Loss**Research supported in part by NSF under grant PYI ECS-9396296, by AFOSR under grant F49620-94-1-0183, and by a grant from Hughes Aircraft Company.“ In Nonlinear Control Systems Design 1995, 269–74. Elsevier, 1995. http://dx.doi.org/10.1016/b978-0-08-042371-5.50050-2.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transverse feedback linearization"
Elobaid, Mohamed, Salvatore Monaco und Dorothee Normand-Cyrot. „Approximate transverse feedback linearization under digital control“. In 2021 American Control Conference (ACC). IEEE, 2021. http://dx.doi.org/10.23919/acc50511.2021.9482951.
Der volle Inhalt der QuelleDoosthoseini, Alireza, und Christopher Nielsen. „Local transverse feedback linearization for nested sets“. In 2015 54th IEEE Conference on Decision and Control (CDC). IEEE, 2015. http://dx.doi.org/10.1109/cdc.2015.7403450.
Der volle Inhalt der QuelleD'Souza, Rollen S., und Christopher Nielsen. „Dual Conditions for Local Transverse Feedback Linearization“. In 2018 IEEE Conference on Decision and Control (CDC). IEEE, 2018. http://dx.doi.org/10.1109/cdc.2018.8619815.
Der volle Inhalt der QuelleD’Souza, Rollen S. „Discrete-Time Transverse Feedback Linearization⋆“. In 2023 American Control Conference (ACC). IEEE, 2023. http://dx.doi.org/10.23919/acc55779.2023.10156159.
Der volle Inhalt der QuelleNielsen, Christopher, und Manfredi Maggiore. „Further Results on Transverse Feedback Linearization of Multi-Input Systems“. In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 2006. http://dx.doi.org/10.1109/cdc.2006.376720.
Der volle Inhalt der QuelleDoosthoseini, A., und C. Nielsen. „Stability problems associated with the transverse feedback linearization normal form“. In 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2012. http://dx.doi.org/10.1109/ccece.2012.6334934.
Der volle Inhalt der QuelleNielsen, Christopher, und Manfredi Maggiore. „Local transverse feedback linearization with partial information for single-input systems“. In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756435.
Der volle Inhalt der QuelleD'Souza, Rollen S., und Christopher Nielsen. „Piecewise-Linear Path Following for a Unicycle using Transverse Feedback Linearization“. In 2020 American Control Conference (ACC). IEEE, 2020. http://dx.doi.org/10.23919/acc45564.2020.9147473.
Der volle Inhalt der QuelleAkhtar, Adeel, Steven L. Waslander und Christopher Nielsen. „Path following for a quadrotor using dynamic extension and transverse feedback linearization“. In 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6425945.
Der volle Inhalt der QuelleNielsen, Christopher, Cameron Fulford und Manfredi Maggiore. „Path following using transverse feedback linearization: Application to a maglev positioning system“. In 2009 American Control Conference. IEEE, 2009. http://dx.doi.org/10.1109/acc.2009.5159998.
Der volle Inhalt der Quelle