Inhaltsverzeichnis
Auswahl der wissenschaftlichen Literatur zum Thema „Transport/transfert de charge“
Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an
Machen Sie sich mit den Listen der aktuellen Artikel, Bücher, Dissertationen, Berichten und anderer wissenschaftlichen Quellen zum Thema "Transport/transfert de charge" bekannt.
Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.
Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.
Zeitschriftenartikel zum Thema "Transport/transfert de charge"
Debnath, Tushar. „Interfacial Charge Transfer Processes in Perovskite-based Materials“. Nanomedicine & Nanotechnology Open Access 8, Nr. 4 (2023): 1–7. http://dx.doi.org/10.23880/nnoa-16000266.
Der volle Inhalt der QuelleArmitage, N. P., M. Briman und G. Grüner. „Charge transfer and charge transport on the double helix“. physica status solidi (b) 241, Nr. 1 (Januar 2004): 69–75. http://dx.doi.org/10.1002/pssb.200303603.
Der volle Inhalt der QuelleJortner, J., M. Bixon, T. Langenbacher und M. E. Michel-Beyerle. „Charge transfer and transport in DNA“. Proceedings of the National Academy of Sciences 95, Nr. 22 (27.10.1998): 12759–65. http://dx.doi.org/10.1073/pnas.95.22.12759.
Der volle Inhalt der QuelleChollet-Xémard, C., D. Michel, P. Szuster, D. Cervellin und E. Lecarpentier. „Retour d’expérience des transferts en HéliSmur de patients Covid-19“. Annales françaises de médecine d’urgence 10, Nr. 4-5 (September 2020): 266–71. http://dx.doi.org/10.3166/afmu-2020-0262.
Der volle Inhalt der QuelleHersam, M. C., und R. G. Reifenberger. „Charge Transport through Molecular Junctions“. MRS Bulletin 29, Nr. 6 (Juni 2004): 385–90. http://dx.doi.org/10.1557/mrs2004.120.
Der volle Inhalt der QuelleKramer, G. J., H. B. Brom und L. J. De Jongh. „Charge transport in charge transfer salts by order parameter fluctuations“. Synthetic Metals 19, Nr. 1-3 (März 1987): 33–38. http://dx.doi.org/10.1016/0379-6779(87)90327-4.
Der volle Inhalt der QuelleYang, Yongfan, Yuze Zhang, Chunhua T. Hu, Mengmeng Sun, Sehee Jeong, Stephanie S. Lee, Alexander G. Shtukenberg und Bart Kahr. „Transport in Twisted Crystalline Charge Transfer Complexes“. Chemistry of Materials 34, Nr. 4 (11.02.2022): 1778–88. http://dx.doi.org/10.1021/acs.chemmater.1c04003.
Der volle Inhalt der QuelleCheng, Che-Hsuan, Darwin Cordovilla Leon, Zidong Li, Emmett Litvak und Parag B. Deotare. „Energy Transport of Hybrid Charge-Transfer Excitons“. ACS Nano 14, Nr. 8 (03.08.2020): 10462–70. http://dx.doi.org/10.1021/acsnano.0c04367.
Der volle Inhalt der QuelleIwasa, Y., N. Watanabe, T. Koda, S. Koshihara, Y. Tokura, N. Iwasawa und G. Saito. „Nonlinear soliton transport in charge transfer compounds“. Synthetic Metals 42, Nr. 1-2 (Mai 1991): 1675–78. http://dx.doi.org/10.1016/0379-6779(91)91925-z.
Der volle Inhalt der QuelleUlanski, Jacek. „Charge-carrier transport in heterogeneous conducting materials: Polymer + charge-transfer complex“. Synthetic Metals 41, Nr. 3 (Mai 1991): 923–30. http://dx.doi.org/10.1016/0379-6779(91)91528-i.
Der volle Inhalt der QuelleDissertationen zum Thema "Transport/transfert de charge"
Liu, Chuan. „Charge transport and charge transfer at organic semiconductor heterojunctions“. Thesis, University of Cambridge, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.611516.
Der volle Inhalt der QuelleCompoint, Mylène. „Transport d'ions potassium à travers une membrane cellulaire : étude des propriétés physicochimiques des canaux kcsa par dynamique moléculaire“. Besançon, 2004. http://www.theses.fr/2004BESA2038.
Der volle Inhalt der QuelleThis thesis is devoted to the study of the physicochemical properties of KcsA channels using classical molecular dynamics simulations. The goal is to reach a better knowledge at the atomic scale of the mechanisms which are responsible forthe ion transport in these transmembrane potassium channels. In the first part,available experimental and theoretical data on the protein properties are presented, while new results obtained during this thesis are discussed in the second part. The main results obtained in part II from restrained MD simulations are as follows : 1) a stable closed conformation for the protein is found with the sequence KWKWKK, 2) strong correlated motions between K+ ions and neighbouring water molecules, and between different K/W couples are determined along the selectivity filter, 3) a realistic open structure is obtained which is consistent with the most recent experimental data. The internal M2 helices rae responsible for the gating mechanism, 4) the gating proceeds according to a zipper mechanism implying first the terminal residues at the innermost part of the M2 helices and then propagating towards the bottom of the cavity, 5) a substantial charge transfer between the K+ ions and the surrounding atoms of the channel is determined using a quantum description for the charges. The third part deals with the presentation of various prospects offered by this work, notably the study of water polarization inside the filter and the cavity in the two protein states, and of the K+/Na+ selectivity of the KcsA by the same quantum methods
Benjamin, Daniel. „Thermal transport and photo-induced charge transport in graphene“. Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42746.
Der volle Inhalt der QuelleHerman, Leslie. „Ru(II) under illumination: a study of charge and energy transfer elementary processes“. Doctoral thesis, Universite Libre de Bruxelles, 2008. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210399.
Der volle Inhalt der QuelleL’ensemble de notre travail s’est concentré sur ces deux domaines d’applications. Par l’étude de différents processus de transfert de charges/d’énergie au sein des complexes seuls (processus intramoléculaires) ou en interaction avec un environnement spécifique (processus intermoléculaires), nous avons souhaité mettre en évidence l’intérêt de l’utilisation d’un nouveau ligand plan étendu, le tpac, au sein de complexes du Ru(II). Un tel ligand permet en effet de conférer d’une part une affinité élevée des complexes résultants pour l’ADN, et d’autre part, de par sa nature pontante, de connecter des unités métalliques entre elles au sein d’entités supramoléculaires de taille importante.
Les propriétés photophysiques de quatre complexes basés sur le ligand plan étendu tpac, le [Ru(phen)2tpac]2+ (P) et son homologue dinucléaire le [(phen)2Ru tpac Ru(phen)2]4+ (PP) (à base de ligands ancillaires phen), ainsi que le [Ru(tap)2tpac]2+ (T) et son homologue dinucléaire le [(tap)2Ru tpac Ru(tap)2]4+ (TT) (à base de ligands ancillaires tap), ont été étudiées et comparées entre elles.
L’examen de ces propriétés, d’abord pour les complexes seuls en solution, en parallèle avec celles de complexes dinucléaires contenant un ligand pontant PHEHAT, a permis de mettre en évidence l’importance de la nature du ligand pontant utilisé. Ces résultats ont ainsi révélé qu’un choix judicieux du ligand pontant permet de construire des entités de grande taille capables de transférer l’énergie lumineuse vers un centre (cas du ligand PHEHAT), ou, au contraire, de relier entre elles des entités ne s’influençant pas l’une l’autre d’un point de vue photophysique (cas du ligand tpac).
Les propriétés des complexes du tpac, étudiés cette fois en présence de matériel génétique (mononucléotide GMP, ADN ou polynucléotides synthétiques), se sont révélées très différentes selon que le complexe portait des ligands ancillaires phen (P, PP) ou tap (T, TT). Seuls les complexes à base de tap sont en effet photoréactifs envers les résidus guanine. Nous avons dès lors focalisé cette partie de notre travail sur les deux complexes T et TT. Cette photoréaction, ainsi que le transfert d’électron photoinduit entre ces complexes excités et la guanine, ont pu être mis en évidence par différentes techniques de spectroscopie d’émission tant stationnaire que résolue dans le temps, ainsi que par des mesures d’absorption transitoire dans des échelles de temps de la nano à la femto/picoseconde. L’étude du comportement photophysique des complexes en fonction du pH a en outre révélé de manière très intéressante que, pour des études en présence d’ADN, la protonation des états excités des complexes devait être considérée. Les résultats de cette étude nous ont fourni des pistes quant à l’attribution des processus observés en absorption transitoire.
Le transfert d’électron a également fait l’objet d’une étude par des méthodes théoriques. Ces calculs ab initio ont permis de mettre en évidence une faible influence de l’énergie de réorganisation sur la vitesse de transfert d’électron, qui semble dépendre plus sensiblement de la non-adiabaticité du processus, mais surtout de l’énergie libre de la réaction et d’un éventuel couplage à un transfert de proton.
L’ensemble des résultats obtenus avec les complexes T et TT en présence de matériel génétique, qui, de manière assez inattendue, sont très semblables, indiquent que ces complexes présentent tous deux un grand intérêt pour le développement de nouvelles drogues antitumorales photoactivables.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Jaoui, Alexandre. „Charge and Entropy Transport in Dilute metals“. Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS151.
Der volle Inhalt der QuelleThis manuscript focuses on the electronic heat/charge transport dichotomy and the beyond-quantum-limit transport properties of dilute metals.In the first part, we report on a study of two semi-metals, WP2 and Sb. In both cases, we found that the Wiedemann-Franz (WF) law is recovered at low temperature (T ≈ 2 K), but not at T ≈ 15 K. We show that the finite-temperature deviation from the WF law is due to a mismatch between the prefactors of the T 2-resistivities. In the Boltzmann picture of transport, this difference is associated with abundant small-angle scattering among electrons. However, we argue that momentum-conserving fermionic collisions in normal-state liquid 3He also produce a thermal T2-resistivity. This opens the door for an alternative interpretation : the existence of a hydrodynamic regime of electrons in these semi-metals. In this scenario, the larger T2 thermal resistivity is due to momentum-conserving electronic collisions. In the case of Sb, the ratio of the two T2-prefactors evolves with sample size. This observation supports the hydrodynamic scenario. Finally, we find a large hydrodynamic correction in the phononic thermal conductivity. The second part deals with the fate of the Fermi sea in the quantum limit (QL). In the doped semi-conductor InAs, we observe a field-induced insulating state for all geometries of transport. The comparison with the succession of field-induced states in graphite up to B = 90 T reveals that the ground state of a 3D electron gas beyond the QL is system-dependent. The observation of a saturating resistivity accompanied by vanishing thermoelectric coefficients in InAs points to the existence of a conductive surface state
Caruge, Jean-Michel. „Etude du transport local de charges dans les couches semi-conductrices désordonnées par spectroscopie à une molécule“. Bordeaux 1, 2001. http://www.theses.fr/2001BOR12347.
Der volle Inhalt der QuelleBeggs, Bruce Cameron. „Optical charge injection into a gallium arsenide acoustic charge transport device“. Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26681.
Der volle Inhalt der QuelleApplied Science, Faculty of
Electrical and Computer Engineering, Department of
Graduate
Rice, Elisabeth. „Computational modelling of electronic states, charge transfer and charge transport in organic semiconductors“. Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/59946.
Der volle Inhalt der QuelleKim, Yee Seul. „Investigation of charge transport/transfer and charge storage at mesoporous TiO2 electrodes in aqueous electrolytes“. Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC161/document.
Der volle Inhalt der QuelleBetter understanding of the mechanisms of charge transport/transfer and charge storage in transparent mesoporous semiconductive metal oxide films (either functionalized or not by redox-active chromophores) in aqueous electrolytes is of fundamental importance for the development and optimization of a wide range of safe, eco-compatible and sustainable energy producing or energy storage devices (e.g., dye-sensitized solar cells, batteries, photoelectrocatalytic cells, …). To address this question, mesoporous semiconductive TiO2 films prepared by glancing angle deposition (GLAD-TiO2) were selected for their unique high surface area, well-controlled morphology, high transparency in the visible, and well-defined semiconductivity that can be easily adjusted through an external bias, allowing thus their characterization by real-time spectroelectrochemistry. We first investigated charge transfer/transport at GLAD-ITO and GLAD-TiO2 electrodes functionalized by a redox-active manganese porphyrin that can play both the role of chromophore and catalyst. We demonstrate that the electrochemical response of the modified electrodes, recorded either in the absence or presence of O2 as substrate, is strongly dependent on the mesoporous film conductivity. By using cyclic voltammetry coupled to UV-visible absorption spectroscopy, we were able to recover some key information such as the heterogeneous electron transfer rate between the immobilized redox-active dye and the semiconductive material, and also to rationalize the specific electrochemical behavior obtained at a porphyrin-modified GLAD TiO2 film under catalytic turnover. In parallel, we developed a new functionalization procedure of mesoporous metal oxide films (GLAD-ITO in the present case) by electrografting of in-situ generated aryldiazonium salts, allowing for modified electrodes characterized by both a high surface coverage and a particularly good stability over time under hydrolytic conditions. Also, we investigated charge storage at GLAD-TiO2 electrodes under various aqueous electrolytic conditions. We notably evidenced for the first time that fast, massive, and reversible insertion of protons can occur in amorphous nanostructured TiO2 films immersed in near neutral aqueous buffer, with the proton donor being the weak acid form of the buffer but not water. We also demonstrated that this proton-coupled electron charge storage process can occur over the entire range of pH and for a wide range of organic or inorganic weak acids, but also of multivalent metal ion aquo complexes, as long as the applied potential and pKa of weak acid are properly adjusted
Polvani, Carlomaria. „Ion transport and charge transfer by P-type ATPases“. Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74298.
Der volle Inhalt der QuelleBücher zum Thema "Transport/transfert de charge"
Bonilla, L. L. Nonlinear wave methods for charge transport. Weinheim: Wiley-VCH, 2010.
Den vollen Inhalt der Quelle findenSiebbeles, Laurens D. A., und Ferdinand Cornelius Grozema. Charge and exciton transport through molecular wires. Weinheim: Wiley-VCH, 2010.
Den vollen Inhalt der Quelle findenS, Bendall D., Hrsg. Protein electron transfer. Oxford, UK: Bios Scientific Publishers, 1996.
Den vollen Inhalt der Quelle finden1946-, Schuster G. B., und Angelov Dimitŭr Simeonov, Hrsg. Long-range charge transfer in DNA. Berlin: Springer, 2004.
Den vollen Inhalt der Quelle findenCharge transfer in physics, chemistry, and biology: Physical mechanisms of elementary processes and an introduction to the theory. Luxembourg: Gordon and Breach Publishers, 1995.
Den vollen Inhalt der Quelle finden1951-, Schöll E., Hrsg. Theory of transport properties of semiconductor nanostructures. London: Chapman & Hall, 1998.
Den vollen Inhalt der Quelle findenMiller, Robert L. Acoustic charge transport: Device technology and applications. Boston: Artech House, 1992.
Den vollen Inhalt der Quelle findenJ, Mattay, und Baumgarten M, Hrsg. Electron transfer. Berlin: Springer-Verlag, 1994.
Den vollen Inhalt der Quelle findenHans-Achim, Wagenknecht, Hrsg. Charge transfer in DNA: From mechanism to application. Weinheim: Wiley-VCH, 2005.
Den vollen Inhalt der Quelle findenBoris, Levin. Charge migration in dna: Perspectives from physics chemistry, and. [Place of publication not identified]: Springer, 2010.
Den vollen Inhalt der Quelle findenBuchteile zum Thema "Transport/transfert de charge"
Dohno, Chikara, und Isao Saito. „Chemical Approach to Modulating Hole Transport Through DNA“. In Charge Transfer in DNA, 153–74. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606629.ch7.
Der volle Inhalt der QuelleO'Neill, Melanie A., und Jacqueline K. Barton. „Sequence-Dependent DNA Dynamics: The Regulator of DNA-Mediated Charge Transport“. In Charge Transfer in DNA, 27–75. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606629.ch2.
Der volle Inhalt der QuelleWagenknecht, Hans-Achim. „Principles and Mechanisms of Photoinduced Charge Injection, Transport, and Trapping in DNA“. In Charge Transfer in DNA, 1–26. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527606629.ch1.
Der volle Inhalt der QuelleAndrew, Trisha L., und Timothy M. Swager. „Structure Property Relationships for Exciton Transfer in Conjugated Polymers“. In Charge and Exciton Transport through Molecular Wires, 271–310. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633074.ch10.
Der volle Inhalt der QuelleTakabe, Hideaki. „Non-local Transport of Electrons in Plasmas“. In Springer Series in Plasma Science and Technology, 285–323. Cham: Springer International Publishing, 2024. http://dx.doi.org/10.1007/978-3-031-45473-8_6.
Der volle Inhalt der QuelleVura-Weis, Josh, Frederick D. Lewis, Mark A. Ratner und Michael R. Wasielewski. „Base Pair Sequence and Hole Transfer through DNA: Rational Design of Molecular Wires“. In Charge and Exciton Transport through Molecular Wires, 133–56. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527633074.ch5.
Der volle Inhalt der QuelleTakagi, H., H. Eisaki, S. Uchida und R. J. Cava. „Charge Transport Properties of Strongly Correlated Metals near Charge Transfer Insulator to Metal Transition“. In Spectroscopy of Mott Insulators and Correlated Metals, 185–93. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-57834-2_16.
Der volle Inhalt der QuelleKee, Robert J., und Huayang Zhu. „Modeling Porous Media Transport, Heterogeneous Thermal Chemistry, and Electrochemical Charge Transfer“. In Modeling and Simulation of Heterogeneous Catalytic Reactions, 187–219. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527639878.ch6.
Der volle Inhalt der QuelleLi, Qiuyang, Wenxing Yang und Tianquan Lian. „Exciton Transport and Interfacial Charge Transfer in Semiconductor Nanocrystals and Heterostructures“. In Springer Handbook of Inorganic Photochemistry, 985–1012. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-63713-2_33.
Der volle Inhalt der QuelleKoyama, Michihisa, und Baber Javed. „Multi-physics Simulation of Charge-Transfer Reaction and Mass Transport in Lithium-Ion Battery Cathode“. In Nanostructured Materials for Next-Generation Energy Storage and Conversion, 429–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-58675-4_12.
Der volle Inhalt der QuelleKonferenzberichte zum Thema "Transport/transfert de charge"
Biswas, Sushmita, Hye-son Jung, Michael Stroscio und Mitra Dutta. „Morphology, optical properties, charge transfer, and charge transport in nanocrystalline quantum dots“. In SPIE OPTO, herausgegeben von Kurt G. Eyink, Frank Szmulowicz und Diana L. Huffaker. SPIE, 2012. http://dx.doi.org/10.1117/12.915540.
Der volle Inhalt der QuelleSanin, Andrey L., und Vera G. Ulianova. „Numerical simulation of quantum electron transport in space with positive charge“. In Second International Conference on Lasers for Measurement and Information Transfer, herausgegeben von Vadim E. Privalov. SPIE, 2002. http://dx.doi.org/10.1117/12.454673.
Der volle Inhalt der QuelleHu, Guoqing. „Solute Transport in Nanochannels With Roughness-Like Structures“. In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18253.
Der volle Inhalt der QuelleWELLS, STEPHEN A., CHI-TIN SHIH und RUDOLF A. RÖMER. „MODELLING CHARGE TRANSPORT IN DNA USING TRANSFER MATRICES WITH DIAGONAL TERMS“. In Proceedings of the 32nd International Workshop. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814289153_0016.
Der volle Inhalt der QuelleChen, Bin, und Bingmei Fu. „A Charge-Diffusion-Filtration Model for Endothelial Surface Glycocalyx“. In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56149.
Der volle Inhalt der QuelleJiang, Fangming, Jianbang Zeng, Wei Wu und Peng Peng. „Direct Numerical Simulation Modeling of Multidisciplinary Transport During Li-Ion Battery Charge/Discharge Processes“. In The 15th International Heat Transfer Conference. Connecticut: Begellhouse, 2014. http://dx.doi.org/10.1615/ihtc15.mtr.009089.
Der volle Inhalt der QuelleTachibana, Yasuhiro. „Interfacial Charge Transfer and Transport Dynamics in Lead Halide Perovskite Solar Cells“. In 3rd International Conference on Perovskite and Organic Photovoltaics and Optoelectronics. València: Fundació Scito, 2018. http://dx.doi.org/10.29363/nanoge.iperop.2019.064.
Der volle Inhalt der QuelleIlinskii, A. V. „Charge Transport in High-Resistivity Photorefractive Crystals (Bi12SiO20, ZnSe, GaAs)“. In Photorefractive Materials, Effects, and Devices II. Washington, D.C.: Optica Publishing Group, 1991. http://dx.doi.org/10.1364/pmed.1991.tuc7.
Der volle Inhalt der QuelleDhillon, Navdeep Singh, und Jayathi Y. Murthy. „Coupled Electro-Thermal-Phase Change Modeling of a Chalcogenide Switch“. In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13950.
Der volle Inhalt der QuelleXu, Weidong, Tian Du, Michael Sachs, Thomas J. Macdonald, Ganghong Ming, Lokeshwari Mohan, Chieh-Ting Lin, Jiaying Wu, Martyn A. McLachlan und James R. Durrant. „Asymmetric Charge Carrier Transfer and Transport in Planar Lead Halide Perovskite Solar Cells“. In 13th Conference on Hybrid and Organic Photovoltaics. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.hopv.2021.051.
Der volle Inhalt der QuelleBerichte der Organisationen zum Thema "Transport/transfert de charge"
Cramer, Christopher J. Scientific Computation Application Partnerships in Materials and Chemical Sciences, Charge Transfer and Charge Transport in Photoactivated Systems, Developing Electron-Correlated Methods for Excited State Structure and Dynamics in the NWChem Software Suite. Office of Scientific and Technical Information (OSTI), November 2017. http://dx.doi.org/10.2172/1408275.
Der volle Inhalt der QuelleKim K., R. Rafiel, M. Boardman, I. Reinhard, A. Sarbutt, G. Watt, C. Watt et al. Charge transport properties of CdMnTe radiation detectors. Office of Scientific and Technical Information (OSTI), April 2012. http://dx.doi.org/10.2172/1044754.
Der volle Inhalt der QuelleSwanson, Jessica. CHARACTERIZING COUPLED CHARGE TRANSPORT WITH MULTISCALE MOLECULAR DYNAMICS. Office of Scientific and Technical Information (OSTI), August 2011. http://dx.doi.org/10.2172/1164073.
Der volle Inhalt der QuelleUllrich, Carsten A. Charge and Spin Transport in Dilute Magnetic Semiconductors. Office of Scientific and Technical Information (OSTI), Juli 2009. http://dx.doi.org/10.2172/960296.
Der volle Inhalt der QuelleMartin, Charles R., und Leon S. Van Dyke. Mass and Charge Transport in Electronically Conductive Polymers. Fort Belvoir, VA: Defense Technical Information Center, August 1990. http://dx.doi.org/10.21236/ada225305.
Der volle Inhalt der QuelleDing, Yan, Sung-Chan Kim, Rusty L. Permenter, Richard B. Styles und Jeffery A. Gebert. Simulations of Shoreline Changes along the Delaware Coast. Engineer Research and Development Center (U.S.), Januar 2021. http://dx.doi.org/10.21079/11681/39559.
Der volle Inhalt der QuelleBrown, William. Mechanisms of pentachlorophenol induced charge transport in lipid membranes. Portland State University Library, Januar 2000. http://dx.doi.org/10.15760/etd.1256.
Der volle Inhalt der QuelleCahill, David G., und R. J. Hamers. Atomic-Scale Charge Transport at the Si(001) Surface. Fort Belvoir, VA: Defense Technical Information Center, Mai 1991. http://dx.doi.org/10.21236/ada236970.
Der volle Inhalt der QuelleFrech, Roger. Charge Transport in Nonaqueous Liquid Electrolytes: A Paradigm Shift. Fort Belvoir, VA: Defense Technical Information Center, Mai 2015. http://dx.doi.org/10.21236/ada622953.
Der volle Inhalt der QuelleBommisetty, Venkat. Symposium GC: Nanoscale Charge Transport in Excitonic Solar Cells. Office of Scientific and Technical Information (OSTI), Juni 2011. http://dx.doi.org/10.2172/1017096.
Der volle Inhalt der Quelle