Bücher zum Thema „Transport neuronal“

Um die anderen Arten von Veröffentlichungen zu diesem Thema anzuzeigen, folgen Sie diesem Link: Transport neuronal.

Geben Sie eine Quelle nach APA, MLA, Chicago, Harvard und anderen Zitierweisen an

Wählen Sie eine Art der Quelle aus:

Machen Sie sich mit Top-39 Bücher für die Forschung zum Thema "Transport neuronal" bekannt.

Neben jedem Werk im Literaturverzeichnis ist die Option "Zur Bibliographie hinzufügen" verfügbar. Nutzen Sie sie, wird Ihre bibliographische Angabe des gewählten Werkes nach der nötigen Zitierweise (APA, MLA, Harvard, Chicago, Vancouver usw.) automatisch gestaltet.

Sie können auch den vollen Text der wissenschaftlichen Publikation im PDF-Format herunterladen und eine Online-Annotation der Arbeit lesen, wenn die relevanten Parameter in den Metadaten verfügbar sind.

Sehen Sie die Bücher für verschiedene Spezialgebieten durch und erstellen Sie Ihre Bibliographie auf korrekte Weise.

1

Gribkoff, Valentin K. Structure, function, and modulation of neuronal voltage-gated ion channels. Hoboken, N.J: Wiley, 2009.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
2

1955-, Gonzalez-Lima Francisco, Hrsg. Cytochrome oxidase in neuronal metabolism and Alzheimer's disease. New York: Plenum Press, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
3

J, Bean Andrew, Hrsg. Protein trafficking in neurons. Amsterdam: Elsevier/Academic Press, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
4

A, Lappi Douglas, Hrsg. Suicide transport and immunolesioning. Austin: R.G. Landes, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
5

Veli, Himanen, Nijkamp Peter, Reggiani Aura und Raitio Juha, Hrsg. Neural networks in transport applications. Aldershot, Hants, England: Ashgate, 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
6

Murdoch, Ritchie J., Keynes R. D und Bolis Liana, Hrsg. Ion channels in neural membranes: Proceedings of the 11th International Conference on Biological Membranes held at Crans-sur-Sierre, Switzerland, June 10-14, 1985. New York: A.R. Liss, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
7

J, Alvarez-Leefmans F., Russell John M. 1942- und International Brain Research Organization. Congress, Hrsg. Chloride channels and carriers in nerve, muscle, and glial cells. New York: Plenum Press, 1990.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
8

1953-, Iverson Linda E., Conn P. Michael und Rudy Bernardo, Hrsg. Ion channels. San Diego: Academic Press, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
9

Cytoskeleton of the nervous system. New York: Springer, 2011.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
10

Suter, Daniel M., und Kyle E. Miller, Hrsg. Neuronal Mechanics and Transport. Frontiers Media SA, 2016. http://dx.doi.org/10.3389/978-2-88919-823-8.

Der volle Inhalt der Quelle
APA, Harvard, Vancouver, ISO und andere Zitierweisen
11

Neuronal cytoskeleton: Morphogenesis, transport and synaptic transmission. Tokyo: Japan Scientific Societies Press, 1993.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
12

Elam, John. Axonal Transport in Neuronal Growth and Regeneration. Springer, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
13

Elam, John. Axonal Transport in Neuronal Growth and Regeneration. Springer London, Limited, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
14

Gonzalez-Lima, Francisco. Cytochrome Oxidase in Neuronal Metabolism and Alzheimer's Disease. Springer London, Limited, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
15

Hirokawa, Nobutaka. Neuronal Cytoskeleton: Morphogenesis, Transport, and Synaptic Transmission (Taniguchi Symposia on Brain Sciences, No 16). CRC, 1994.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
16

Mason, Peggy. Cells of the Nervous System. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190237493.003.0002.

Der volle Inhalt der Quelle
Annotation:
The nervous system is made up of neurons and glia that derive from neuroectoderm. Since neurons are terminally differentiated and do not divide, primary intracranial tumors do not arise from mature neurons. Tumors outside the nervous system may metastasize inside the brain or may release a substance that negatively affects brain function, termed paraneoplastic disease. Neurons receive information through synaptic inputs onto dendrites and soma and send information to other cells via a synaptic terminal. Most neurons send information to faraway locations and for this, an axon that connects the soma to synaptic terminals is required. Glial cells wrap axons in myelin, which speeds up information transfer. Axonal transport is necessary to maintain neuronal function and health across the long distances separating synaptic terminals and somata. A common mechanism of neurodegeneration arises from impairments in axonal transport that lead to protein aggregation and neuronal death.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
17

Sada, Nagisa, und Tsuyoshi Inoue. Lactate Dehydrogenase. Herausgegeben von Detlev Boison. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190497996.003.0029.

Der volle Inhalt der Quelle
Annotation:
Glucose is transported into neurons and used as an energy source. It is also transported into astrocytes, a type of glial cell, and converted to lactate, which is then released to neurons and used as another energy source. The latter is called the astrocyte-neuron lactate shuttle. Although the lactate shuttle is a metabolic pathway, it also plays important roles in neuronal activities and brain functions. We recently reported that this metabolic pathway is involved in the antiepileptic effects of the ketogenic diet. Lactate dehydrogenase (LDH) is a metabolic enzyme that mediates the lactate shuttle, and its inhibition hyperpolarizes neurons and suppresses seizures. This enzyme is also a molecular target of stiripentol, a clinically used antiepileptic drug for Dravet syndrome. This review provides an overview of electrical regulation by the astrocyte-neuron lactate shuttle, and then introduces LDH as a metabolic target against epilepsy.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
18

Zuccato, Chiara, und Elena Cattaneo. Normal Function of Huntingtin. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199929146.003.0011.

Der volle Inhalt der Quelle
Annotation:
Huntingtin (HTT) is the 3,144–amino acid protein product of the Huntington’s disease gene (HTT), which can be traced back through 800 million years of evolution. It carries a trinucleotide CAG repeat that encodes polyglutamine (polyQ) at an evolutionarily conserved NH2-terminal position in exon 1. This chapter discusses the discoveries that have mapped the evolutionary history of HTT and the CAG repeat and the critical role of the protein in development as well as its activities in the adult brain. During embryogenesis, HTT is critical for gastrulation, neurulation, and neurogenesis. In the adult brain, HTT acts as an antiapoptotic protein and promotes transcription of neuronal genes and vesicle transport. Subversion or exacerbation of HTT brain function by an abnormally expanded polyQ repeat contributes to neuronal vulnerability in HD and suggests that loss of normal HTT function may be implicated in the disease.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
19

Bean, Andrew J. Protein Trafficking in Neurons. Elsevier Science & Technology Books, 2006.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
20

Sotnikov, O. S. Properties Live Axoplasm. Nova Science Publishers, Incorporated, 2015.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
21

Mutations in dynein link motor neuron degeneration to defects in retrograde transport. 2003.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
22

Baumann, Pierre. Transport Mechanisms of Tryptophan in Blood Cells, Nerve Cells, and at the Blood-Brain Barrier: Proceedings of the International Symposium, Prilly/Lausanne, Switzerland, July 6-7 1978. Springer, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
23

Baumann, Pierre. Transport Mechanisms of Tryptophan in Blood Cells, Nerve Cells, and at the Blood-Brain Barrier: Proceedings of the International Symposium, ... of Neural Transmission. Supplementa ). Springer, 2014.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
24

Reggiani, Aura, Peter Nijkamp und Veli Himanen. Neural Networks in Transport Applications. Taylor & Francis Group, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
25

Reggiani, Aura, Peter Nijkamp und Veli Himanen. Neural Networks in Transport Applications. Taylor & Francis Group, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
26

Reggiani, Aura, Peter Nijkamp und Veli Himanen. Neural Networks in Transport Applications. Taylor & Francis Group, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
27

Neural Networks in Transport Applications. Taylor & Francis Group, 2019.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
28

Eiki, Manami. Development of enteric serotonergic neurons: Role of transient extraganglionic 5-HT transport in phenotypic determination. 1998.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
29

Gaitanis, John, Phillip L. Pearl und Howard Goodkin. The EEG in Degenerative Disorders of the Central Nervous System. Herausgegeben von Donald L. Schomer und Fernando H. Lopes da Silva. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190228484.003.0013.

Der volle Inhalt der Quelle
Annotation:
Nervous system alterations can occur at any stage of prenatal or postnatal development. Any of these derangements, whether environmental or genetic, will affect electrical transmission, causing electroencephalogram (EEG) alteration and possibly epilepsy. Genetic insults may be multisystemic (for example, neurocutaneous syndromes) or affect only the brain. Gene mutations account for inborn errors of metabolism, channelopathies, brain malformations, and impaired synaptogenesis. Inborn errors of metabolism cause seizures and EEG abnormalities through a variety of mechanisms, including disrupted energy metabolism (mitochondrial disorders, glucose transporter defect), neuronal toxicity (amino and organic acidopathies), impaired neuronal function (lysosomal and peroxisomal disorders), alteration of neurotransmitter systems (nonketotic hyperglycinemia), and vitamin and co-factor dependency (pyridoxine-dependent seizures). Environmental causes of perinatal brain injury often result in motor or intellectual impairment (cerebral palsy). Multiple proposed etiologies exist for autism, many focusing on synaptic development. This chapter reviews the EEG findings associated with this myriad of pathologies occurring in childhood.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
30

(Editor), Abel Lajtha, und Maarten E.A. Reith (Editor), Hrsg. Handbook of Neurochemistry and Molecular Neurobiology: Neural Membranes and Transport (Springer Reference). 3. Aufl. Springer, 2007.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
31

Ion channels in neural membranes: Proceedings of the 11th International Conference on Biological Membranes held at Crans-sur-Sierre, Switzerland, June 10-14, 1985 (Neurology and neurobiology). A.R. Liss, 1986.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
32

Kirilly, Eszter. TIME COURSE OF NEURONAL DAMAGE AND RECOVERY INDUCED BY MDMA: EXPRESSION AND DISTRIBUTION OF SEROTONIN TRANSPORTER IN THE RAT BRAIN. VDM Verlag Dr. Müller, 2010.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
33

Walsh, Richard A. “I Am Not Sure If I Should Do DaT”. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190607555.003.0008.

Der volle Inhalt der Quelle
Annotation:
Nuclear medicine-based imaging techniques can provide an estimation of nigrostriatal tract denervation based on radionucleotide uptake in the distal presynaptic terminals of dopaminergic neurons. Although unhelpful in differentiating between differing etiologies of denervation in varied neurodegenerative disorders associated with parkinsonism, this imaging is justified in situations in which parkinsonism is believed to be drug-induced or functional or in cases in which subclinical parkinsonism is suspected. The most common clinical situation in which dopamine transporter imaging is helpful is in the patient on neuroleptic therapy that cannot be stopped who has developed parkinsonism. Dopamine transporter imaging should be normal in drug-induced tremor.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
34

Alvarez-Leefmans, F. J., und Russell John M. Chloride Channels and Carriers in Nerve, Muscle, and Glial Cells. Springer London, Limited, 2013.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
35

(Editor), John N. Abelson, Melvin I. Simon (Editor), Bernardo Rudy (Editor) und Linda E. Iverson (Editor), Hrsg. Ion Channels, Volume 207 (Methods in Enzymology). Academic Press, 1992.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
36

Nixon, Ralph A., und Aidong Yuan. Cytoskeleton of the Nervous System. Springer, 2016.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
37

Shaw, Pamela, und David Hilton-Jones. The lower cranial nerves and dysphagia. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780198569381.003.0429.

Der volle Inhalt der Quelle
Annotation:
Disorders affecting the lower cranial nerves – V (trigeminal), VII (facial), IX (glossopharyngeal), X (vagus), XI (accessory) and XII (hypoglossal) – are discussed in the first part of this chapter. The clinical neuroanatomy of each nerve is described in detail, as are disorders – often in the form of lesions – for each nerve.Trigeminal nerve function may be affected by supranuclear, nuclear, or peripheral lesions. Because of the wide anatomical distribution of the components of the trigeminal nerve, complete interruption of both the motor and sensory parts is rarely observed in practice. However, partial involvement of the trigeminal nerve, particularly the sensory component, is relatively common, the main symptoms being numbness and pain. Reactivation of herpes zoster in the trigeminal nerve (shingles) can cause pain and a rash. Trigeminal neuralgia and sensory neuropathy are also discussed.Other disorders of the lower cranial nerves include Bell’s palsy, hemifacial spasm and glossopharyngeal neuralgia. Cavernous sinus, Tolosa–Hunt syndrome, jugular foramen syndrome and polyneuritis cranialis are caused by the involvement of more than one lower cranial nerve.Difficulty in swallowing, or dysphagia, is a common neurological problem and the most important consequences include aspiration and malnutrition (Wiles 1991). The process of swallowing is a complex neuromuscular activity, which allows the safe transport of material from the mouth to the stomach for digestion, without compromising the airway. It involves the synergistic action of at least 32 pairs of muscles and depends on the integrity of sensory and motor pathways of several cranial nerves; V, VII, IX, X, and XII. In neurological practice dysphagia is most often seen in association with other, obvious, neurological problems. Apart from in oculopharyngeal muscular dystrophy, it is relatively rare as a sole presenting symptom although occasionally this is seen in motor neurone disease, myasthenia gravis, and inclusion body myositis. Conversely, in general medical practice, there are many mechanical or structural disorders which may have dysphagia as the presenting feature. In some of the disorders, notably motor neurone disease, both upper and lower motor neurone dysfunction may contribute to the dysphagia. Once dysphagia has been identified as a real or potential problem, the patient should undergo expert evaluation by a clinician and a speech therapist, prior to any attempt at feeding. Videofluoroscopy may be required. If there is any doubt it is best to achieve adequate nutrition through the use of a fine-bore nasogastric tube and to periodically reassess swallowing. Anticholinergic drugs may be helpful to reduce problems with excess saliva and drooling that occur in patients with neurological dysphagia, and a portable suction apparatus may be helpful. Difficulty in clearing secretions from the throat may be helped by the administration of a mucolytic agent such as carbocisteine or provision of a cough assist device.
APA, Harvard, Vancouver, ISO und andere Zitierweisen
38

1937-, Moss Stephen John, und Henley Jeremy, Hrsg. Receptor and ion-channel trafficking: Cell biology of ligand-gated and voltage-sensitive ion channels (molecular and cellular neurobiology). Oxford: Oxford University Press, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
39

(Editor), Stephen Moss, und Jeremy Henley (Editor), Hrsg. Receptor and Ion-Channel Trafficking: Cell Biology of Ligand-Gated and Voltage Sensitive Ion Channels. Oxford University Press, USA, 2002.

Den vollen Inhalt der Quelle finden
APA, Harvard, Vancouver, ISO und andere Zitierweisen
Wir bieten Rabatte auf alle Premium-Pläne für Autoren, deren Werke in thematische Literatursammlungen aufgenommen wurden. Kontaktieren Sie uns, um einen einzigartigen Promo-Code zu erhalten!

Zur Bibliographie